2 2

Proje Grubu: EEEAG Sayfa Sayısı: 179 Proje No: 114E036 Proje Bitiş Tarihi: 15.02.2017 Metin Dili: Türkçe İndeks Tarihi: 02-05-2019

Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi

Öz:
Harmonik Hareket Mikrodalga Doppler Görüntüleme (HHMDG), vücut dokularının elektriksel ve mekanik özelliklerini görüntülemeye yönelik yeni bir görüntüleme yöntemidir. Bu yöntem, yakın zamanda, kanserli dokuların erken tanısı için ODTÜ Elektrik ve Elektronik Mühendisliği bölümündeki araştırmacılar tarafından önerilmiştir. Bu projenin temel amacı 3 boyutta tarama yapabilen ve görüntü oluşturabilen bir HHMDG prototip sisteminin geliştirilmesi ve doku benzeri malzemeler üzerinde denenmesidir. Bu amaçla proje kapsamında fibroglandüler, yağ ve tümör dokularının mekanik ve elektriksel özelliklerini taklit eden farklı fantomlar geliştirilmiş ve karakterize edilmiştir. Fantom çalışmalarına paralel olarak, deneysel sistem tasarlanmış ve geliştirilmiştir. Geliştirilen fantomlar mekanik olarak HMMDG yöntemi ile taranarak görüntüleri elde edilmiştir. HHMDG verisi hem standart test cihazlarıyla hem de yönteme özel geliştirilen almaç devresi kullanılarak alınmıştır. Proje kapsamında ayrıca düşük faz gürültülü sentezör tasarımı yapılmıştır. Yöntem için hızlı benzetim yöntemleri araştırılmış ve hassasiyet analizi için benzetimler yapılmıştır. HHMDG görüntülerinde 20 mm derinlikte 15 mm çaplı yüksek dielektrik ve elastik sabitine sahip tümör fantomları yağ doku fantomu içinde ayrıştırılabilmektedir. Titreşim frekansı yükseldikçe çözünürlüğün arttığı gözlenmiştir. Hassasiyetin artırılması için deneysel sistem kısıtları belirlenmiş ve sistemin iyileştirilmesi için olası çözümler sunulmuştur.
Anahtar Kelime: Elastiklik Görüntüleme Odaklı Ultrason Meme Kanseri Tanısı Mikrodalga görüntüleme Tıbbi görüntüleme

Konular: Mühendislik, Elektrik ve Elektronik Bilgisayar Bilimleri, Yazılım Mühendisliği Genel ve Dahili Tıp Görüntüleme Bilimi ve Fotoğraf Teknolojisi
Erişim Türü: Erişime Açık
  • Abbosh, A., “Early breast cancer detection using hybrid imaging modality,” 2009 IEEE Antennas and Propagation Society International Sym- posium and Usnc/Ursi National Radio Science Meeting, Vols 1-6, pp. 1456_ 1459, 2009.
  • Data Acquisition Sytem For Harmonic Motion Microwave Doppler Imaging (Bildiri Uluslararası Bildiri - Sözlü Sunum),
  • Aktas, A. And Ismail, M., CMOS PLLs and VCOs for 4G Wireless. Springer Publishing Company, Incorporated, 2013.
  • Harmonic Motion Microwave Doppler Imaging Method for Breast Tumor Detection (Bildiri Uluslararası Bildiri - Sözlü Sunum),
  • Barale, F., “Frequency dividers design for multi-GHz PLL systems,” 2008.
  • Microwave Sensing of Acoustically Induced Local Harmonic Motion: Experimental and Simulation Studies on Breast Tumor Detection (Makale - İndeskli Makale),
  • Barney, B, “Introduction to Parallel Programming,” https://computing.llnl.gov/tutorials/parallel_comp/. Son Erişim Tarihi: 12.04.2017
  • Realization of Harmonic Motion MicrowaveDoppler Imaging Method (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Barney, B., “Message Passing Interface, available online”, https://computing.llnl.gov/tutorials/mpi/. Son Erişim Tarihi: 12.04.2017
  • Low Phase Noise Phase Locked Loop Frequency SynthesizerDesign for Breast Cancer Detection (Bildiri - Ulusal Bildiri - Sözlü Sunum),
  • Bocquet, B., Vandevelde, J. C., Mamouni, A., Leroy, Y., Giaux, G., Delannoy, J., and Delvalee, D., “Microwave radiometric imaging at 3-GHz for the exploration of breast-tumors,” IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 6, pp. 791_793, 1990.
  • Harmonik Hareket Mikrodalga Görüntüleme YöntemindeAlınan Doppler İşaretin Tümör Pozisyonuna Göre İncelenmesi (Bildiri - Ulusal Bildiri - Sözlü Sunum),
  • Bulyshev, A. E., Semenov , S. Y., Souvorov, A. E., Svenson, R. H., . Nazarov , A. G, Sizov, Y. E., and Tatsis, G. P., “Computational modeling of three dimensional microwave tomography of breast cancer,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 9, pp. 1053_1056, 2001. Times Cited: 56 56.
  • Received Signal in Harmonic Motion MicrowaveDoppler Imaging as a Function of Tumor Position in a3D Scheme (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Chye, B. C., Novel Techniques for Fully Integrated RF CMOS Phase-Locked Loop Frequency Synthesizer. Ph.D thesis, Nanyang Technological University, 2004.
  • En iyi öğrenci bildirisi (Ödül - Uluslararası Ödül - Diğer),
  • Converse, M., Bond, E. J., Hagness, S. C., and Van Veen, B. D., “Ultrawideband microwave spacetime beamforming for hyperthermia treatment of breast cancer: A computational feasibility study,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1876_1889, 2004. Times Cited: 42 2.
  • DESIGN AND REALIZATION OF A HYBRID MEDICAL IMAGING SYSTEM: HARMONIC MOTION MICROWAVE DOPPLER IMAGING (Tez (Araştırmacı Yetiştirilmesi) - Doktora Tezi),
  • Croteau, J., Sill, J., Williams, T. and . Fear, E., “Phantoms for testing radar-based microwave breast Imaging”, Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, 2009. ANTEM/URSI 2009. 13th International Symposium on, On page(s): 1 - 4
  • A STUDY ON A LOW PHASE NOISE CHARGE PUMP PHASE-LOCKED LOOP AT 2.8 GHZ (Tez (Araştırmacı Yetiştirilmesi) - Yüksek Lisans Tezi),
  • Dahl, J. J., Pinton, G. F., Palmeri, M. L., Agrawal, V., Nightingale, K. R., and Trahey, G. E., “A parallel tracking method for acoustic radiation force impulse imaging,” Ieee Transactions on Ultrasonics Ferroelectrics and Fre- quency Control, vol. 54, no. 2, pp. 301_312, 2007. Times Cited: 44.
  • Fatemi, M. and Greenleaf, J. F., “Ultrasound-stimulated vibro-acoustic spectrography, Science, vol. 280, no. 5360, pp. 82_85, 1998.
  • Fatemi M., and Greenleaf, J. F., “Vibro-acoustography: An imaging modality based on ultrasoundstimulated acoustic emission,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 6603_6608, 1999. Times Cited: 209.
  • Fatemi, M., Manduca, A., and Greenleaf, J.F. 2003. "Imaging Elastic Properties Of Biological Tissues By Low-Frequency Harmonic Vibration", Proceedings of the IEEE, 91(10), 1503-1519.
  • Fear, E., and Stuchly, M., “Microwave detection of breast cancer,” Microwave Theory and Techniques, IEEE Transactions on, vol. 48, pp. 1854_1863, Nov 2000.
  • Fear, E. C., Hagness, S. C., Meaney , P. M., Okoniewski, M., and Stuchly, M. A., “Enhancing breast tumor detection with near-field imaging,” IEEE Microwave Magazine, 2002.
  • Fitzpatrick, J., Jennings. Analysis and Design of Low-Jitter Oscillators. Diss. Brigham Young University, 2004.
  • Food and D. Administration, ‘’HIFU Simulator.http://www.fda.gov/ aboutfda/centersoffices/officeofmedicalproductsandtobacco/ cdrh/cdrhoffices/ucm301529.htm/, 2012. [Online; accessed 03 Sep. 2013].
  • G . World Health Organization, “Breast cancer Fact Sheet. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Son Erişim Tarihi: 12.04.2017
  • Gabriel, C., Gabriel, S., and Corthout, E., “The dielectric propertiesof biological tissues: I. literature survey, 1996.
  • Gabriel, S., Lau, R., and Gabriel, C., “The dielectric properties of biological tissues: Ii. measurements on the frequency range 10 hz to 20 ghz,” 1996.
  • Ham, D., Hajimiri, A., “Concepts and Methods in Optimization of Integrated LC VCOs”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 6, JUNE 2001,896-909
  • He, Z. L., Huang, K., Zhang, Y., Yan, Y., and Liang, C. H.," Study on High Performance of MPIBased Parallel FDTD from WorkStation to Super Computer Platform "
  • Henriksson, T., Joachimowicz, N., Conessa, C., and Bolomey, J.-C., “Quantitative microwave imaging for breast cancer detection using a planar 2.45 ghz system,” Ieee Transactions on Instrumentation and Measurement, vol. 59, no. 10, pp. 2691_2699, 2010. Times Cited: 11 IEEE International Workshop on Medical Measurements and Applications May 29-30, 2009 Cetraro, ITALY IEEE; IEEE Instrumentat Soc, TC25 Med and Biol Measurements; Univ Calabria, Dept Elect, Comp and Syst; Univ Sannio 11.
  • Hou, G. Y., Luo, J., Maleke, C., Konofagou, E. E., and Ieee, “Simulation of hmifu (harmonic motion imaging for focused ultrasound) with in-vitro validation, in 2010 IEEE 36th Annual Northeast Bioengineering Conference.
  • Khattoi, A., A non-sequential phase detector for low jitter clock recovery applications. PhD thesis, Kansas State University, 2010.
  • Huang, F. H., Hsin, Y. M., “A dual-gate 2nd/3rd-order subharmonic injection-locked oscillator in GaAs PHEMT” Microelectronics Journal 45 (2014) 89–94
  • Khattoi, A., A non-sequential phase detector for low jitter clock recovery applications. Diss. Kansas State University, 2010.
  • Klemm, M., Leendertz, J. A., Gibbins, D., Craddock, I. J., Preece, A., and Benjamin, R., “Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms,” Ieee Antennas and Wireless Propagation Letters, vol. 8, pp. 1349_1352, 2009. Times Cited: 11 11.
  • Konofagou, E. E., Ottensmeyer, M., Agabian, S., Dawson, S. L., and Hynynen. K., “Estimating localized oscillatory tissue motion for assessment of the underlying mechanical modulus, Ultrasonics, “ vol. 42, no. 1-9, pp. 951_956, 2004. Times Cited: 20 Ultrasonics International 2003 Meetng JUN 30-JUL 03, 2003 Granada, SPAIN.
  • Kundert, K., “Predicting the phase noise of pll-based frequency synthesizers,” 2002.
  • Lai, J. C. Y., Soh, C. B., Gumawan, E., and Low, K. S., “Uwb microwave imaging for breast cancer detection-experiments with heterogeneous breast phantoms,” vol. 16, pp. 19_29, 2011.
  • Lau, S. G. and Gabriel, C., “The dielectric properties of biological tissues: Iii. parametric models for the dielectric spectrum of tissues,” 1996.
  • Lazebnik M, Madsen E L, Frank G R and Hagness S C “Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications,” Phys. Med. Biol. vol.50, pp.4245–58, 2005.
  • Lazebnik, M., Okoniewski, M., Booske, J., and Hagness, S., “Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies,” Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 822_824, Dec 2007.
  • Li, X., Davis , S., Hagness, S., Van Der Weide, D., and Van Veen, B., “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” Microwave Theory and Techniques, IEEE Transactions on, vol. 52, pp. 1856_1865, Aug 2004.
  • Li, X., Bond , E. J., Van Veen, B., and Hagness, S., “An overview of ultra-wideband microwave imaging via space-time beamforming for earlystage breast-cancer detection,” Antennas and Propagation Magazine, IEEE, vol. 47, pp. 19_34, Feb 2005.
  • Madsen, E. L., Hobson, M. A., Shi, H., Varghese, T. &Frank, G. R. “Stability of heterogeneous elastographyphantoms made from oil dispersions in aqueous gels”, Ultrasound Med. Biol. 32, 261– 270 2006.
  • Maleke, C., Pernot, N., Konofagou, E. E., and Ieee, “A single-element focused transducer methodfor harmonic motion imaging,” 2005 IEEE Ultra- sonics Symposium, Vols 1-4, pp. 17_20, 2005. Times Cited: 0 IEEE International Ultrasonics Symposium SEP 18-21, 2005 Rotterdam, NETHERLANDS IEEE 0-7803-9382-1.
  • Maloney, J. G., and Smith, G. S. , “The efficient modeling of thin material sheets in the finitedifference time-domain (FDTD) method,” IEEE Trans. Antennas and Propag., AP- 40, 3, pp, 323330, 1990.
  • Mathworks Inc. http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html, Son Erişim Tarihi: 12.04.2017
  • Muthupillai, R., Lomas, D., Rossman, P., Greenleaf, J., Manduca, A., and Ehman, R., “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science, vol. 269, no. 5232, pp. 1854_ 1857, 1995.
  • Nightingale, K. R., Palmeri, M. L., Nightingale, R. W., & Trahey, G. E. , 2001. On the feasibility of remote palpation using acoustic radiation force. The Journal of the Acoustical Society of America, 110(1), 625–634.
  • Nightingale, K., Soo, M. S., Nightingale, R., and Trahey, G., “Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound in Medicine and Biology, vol. 28, no. 2, pp. 227_235, 2002. Times Cited: 341.
  • NVIDIA, https://www.nvidia.com/object/what-is-gpu-computing.html, Son Erişim Tarihi: 12.04.2017.
  • Palmeri, M. L., Sharma, A. C., Bouchard, R. R., Nightingale, R. W., and Nightingale, K. R., “A finiteelement method model of soft tissue response to impulsive acoustic radiation force,” Ieee Transactions on Ultrasonics Ferro- electrics and Frequency Control, vol. 52, no. 10, pp. 1699_1712, 2005. Times Cited: 71.
  • Palmeri, M. L., Nightingale, K. R., "Acoustic radiation force-basedelasticity imaging methods," Interface Focus, vol.1, pp. 553–564, 2011.
  • Razavi. B., RF Microelectronics. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.
  • Razavi, B., “Introduction to PLLs.” http://www.seas.ucla.edu/ brweb/teaching/215C_W2013/PLLs.pdf, 2000. Razavi, B., RF Microelectronics (2Nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series). Upper Saddle River, NJ, USA: Prentice Hall Press, 2nd ed., 2011
  • Salvador, S. M. and Vecchi, G., “Experimental tests of microwave breast cancer detection on phantoms,” Ieee Transactions on Antennas and Prop- agation, vol. 57, no. 6, pp. 1705_1712, 2009. Times Cited: 9 9.
  • Samani, A., Zubovits, J., and Plewes, D., “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Physics in Medicine and Biology, vol. 52, no. 6, pp. 1565_1576, 2007. Times Cited: 114.
  • Sarvazyan, A. P., Rudenko, O. V., Swanson, S. D., J.Brian, and Fowlkes, S. Y. E., “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound in Medicine and Biology, vol. 24, no. 9, pp. 1419 _ 1435, 1998.
  • Shan, B., Pelegri, A. A., Maleke, C., and Konofagou, E. E., “A mechanical model to compute elastic modulus of tissues for harmonic motion imaging,” Journal of Biomechanics, vol. 41, no. 10, pp. 2150_2158, 2008. Times Cited: 8.
  • Sill, J. and Fear, E., “Tissue sensing adaptive radar for breast cancer detection experimental investigation of simple tumor models,” Microwave Theory and Techniques, IEEE Transactions on, vol. 53, pp. 3312_3319, Nov 2005.
  • Sugimoto, T., Ueha, S., and Itoh, K., “Tissue hardness measurement using the radiation force of focused ultrasound,” Ieee 1990 Ultrasonics Symposium : Proceedings, Vols 1-3, pp. 1377_1380, 1990. Times Cited: 9 MCAVOY, BR IEEE 1990 ULTRASONICS SYMP DEC 04-07, 1990 HONOLULU, HI IEEE, ULTRASON FERROELECT and FREQUENCY CONTROL SOC.
  • Terlemez, B., Oscillation control in CMOS phase-locked loops. PhD thesis, Citeseer, 2004.
  • Top, C. B., ”Harmonic Motion Microwave Doppler Imaging Method,” Ph. D. thesis, Middle East Technical University, September 2013.
  • Top, C., and Gencer, N. G., “Harmonic motion microwave doppler imaging: A simulation study using simple breast model,” IEEE Trans. on Medical Imag, vol: 33, no:2,pp.290-300, Feb 2014.
  • Top C. B., Tafreshi A. K., Gençer N. G., “Microwave Sensing of Acoustically Induced Local Harmonic Motion: Experimental and Simulation Studies on Breast Tumor Detection,” IEEE Trans. Microwave Theory and Techniques, Vol 64., No:11, 3974-3986, November 2016.
  • Viana, C. A. A.. "Injected Phototransistor Oscillator." (2010).
  • Viola, F. and Walker, W., “Radiation force imaging of viscoelastic properties with reduced artifacts,” Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 50, pp. 736_742, June 2003.
  • Wells, P. N. T. and Liang, H.-D., “Medical ultrasound: imaging of soft tissue strain and elasticity.,” Journal of the Royal Society, Interface / the Royal Society, vol. 8, pp. 1521_49, nov 2011.
  • Yamakoshi, Y., Sato, J., and Sato, T., “Ultrasonic-imaging of internal vibration of soft-tissue under forced vibration,” Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 37, no. 2, pp. 45_53, 1990. Times Cited: 227.
  • Ybarra, G. A., Liu , Q. H., Stang, J. P., and Joines, W. T., Microwave Breast Imaging, book section 12. American Scientific Publishers, 2007.
  • Zhao, M., Shea, J., Hagness, S., Van Der Weide, D., Van Veen, B., and Varghese, T., “Numerical study of microwave scattering in breast tissue via coupled dielectric and elastic contrasts,” Antennas and Wireless Propagation Letters, IEEE, vol. 7, pp. 247_250, 2008.
  • Zhao, M., Contributions to Cost Reduction and Sensitivity Improvement of Microwave Breast Cancer Detection. University of Wisconsin”Madison, 2009.
APA GENÇER N, TOP C, KAMALI TAFRESHI A (2017). Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. , 1 - 179.
Chicago GENÇER Nevzat Güneri,TOP Can Barış,KAMALI TAFRESHI Azadeh Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. (2017): 1 - 179.
MLA GENÇER Nevzat Güneri,TOP Can Barış,KAMALI TAFRESHI Azadeh Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. , 2017, ss.1 - 179.
AMA GENÇER N,TOP C,KAMALI TAFRESHI A Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. . 2017; 1 - 179.
Vancouver GENÇER N,TOP C,KAMALI TAFRESHI A Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. . 2017; 1 - 179.
IEEE GENÇER N,TOP C,KAMALI TAFRESHI A "Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi." , ss.1 - 179, 2017.
ISNAD GENÇER, Nevzat Güneri vd. "Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi". (2017), 1-179.
APA GENÇER N, TOP C, KAMALI TAFRESHI A (2017). Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. , 1 - 179.
Chicago GENÇER Nevzat Güneri,TOP Can Barış,KAMALI TAFRESHI Azadeh Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. (2017): 1 - 179.
MLA GENÇER Nevzat Güneri,TOP Can Barış,KAMALI TAFRESHI Azadeh Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. , 2017, ss.1 - 179.
AMA GENÇER N,TOP C,KAMALI TAFRESHI A Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. . 2017; 1 - 179.
Vancouver GENÇER N,TOP C,KAMALI TAFRESHI A Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi. . 2017; 1 - 179.
IEEE GENÇER N,TOP C,KAMALI TAFRESHI A "Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi." , ss.1 - 179, 2017.
ISNAD GENÇER, Nevzat Güneri vd. "Harmonik Hareket Mikrodalga Doppler Görüntüleme Yöntemi için Prototip Sistem Geliştirilmesi". (2017), 1-179.