20 16

Proje Grubu: EEEAG Sayfa Sayısı: 128 Proje No: 113E596 Proje Bitiş Tarihi: 01.03.2017 Metin Dili: Türkçe İndeks Tarihi: 24-04-2019

Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi

Öz:
Karbon nanotüplerin (KNT’ lerin) metallere yakın iletkenlikleri, yüksek yüzey alanları ve fonksiyonelleştirilebilir yüzey morfolojisine sahip olmaları süperkapasitör elektrotu olarak kullanılmalarının itici gücüdür. Ancak, KNT esaslı süperkapasitörlerin, metal oksit ve iletken polimerlere göre daha düşük enerji depolama kapasitesine sahip olduğunu belirtmiştir. Öte yandan metal oksitler ve iletken polimerler üzerine yapılan çalışmalar metal oksitlerin düşük iletkenliğini ve iletken polimerlerin mekanik dayanıksızlığını ortaya koymuştur. Gerçekleştirilen projenin amacı farklı mimarilerdeki süperkapasitörlerin KNT’ lerle geliştirilmesidir. KNT’lerin metal oksit ve iletken polimerler ile birlikte kullanıldığı üçlü nanokompozit çalışmaları gelecek vadetmektedir ve proje kapsamında incelenen ilk mimari budur. Bu amaçla çeşitli metal oksit ve iletken polimerler kullanılmıştır. İkinci mimaride üç-boyutlu süperkapasitörler üretilmiştir. Bu amaçla KNT kağıtlar lazer ile desenlenerek geleneksel iki-boyutlu cihaz mimarisi üç-boyutlu hale getirilmiştir. Üçüncü mimaride ise KNT ince filmleri elektrot olarak kullanan esnek ve şeffaf süperkapasitörler üretilmiştir. Elektrotlarda düşük yoğunluklarda KNT ince filmler kullanılmıştır. Projede iki çeşit KNT kullanılmıştır. Bunlar, kimyasal buhar biriktirme yöntemiyle üretilen KNT’ler ve ticari olarak temin edilen KNT’ lerdir. KNT’ lerin ince film ve kağıt formunda üretildiği durumlarda ticari olarak temin edilen KNT’ ler kullanılmıştır. Her üç mimaride üretilen süperkapasitörlerin cihaz özellikleri detaylı şekilde incelenmiştir.
Anahtar Kelime: metal oksitler iletken polimerler nanokompozit elektrotlar karbon nanotüpler enerji Süperkapasitörler

Konular: Metalürji Mühendisliği Malzeme Bilimleri, Kompozitler
Erişim Türü: Erişime Açık
  • An, K. H., Kim, W. S., Park, Y. S., Moon, J. M., Bae, D. J., Lim, S. C., Lee, Y. S., Lee, Y. H., Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes, Adv. Funct. Mater., 11, 5, (2001).
  • Textile supercapacitors-based on MnO2/SWNT/conducting polymer ternary composites (Makale - İndeskli Makale),
  • Aravinda, L. S., Nagaraja, K. K. , Bhat, K. U., Bhat, B. R., Magnetron sputtered MoO3/carbon nanotube composite electrodes for electrochemical supercapacitor, J Electroanal Chem 699 (2013) 28-32.
  • All-Organic Electrochromic Supercapacitor Electrodes (Makale - İndeskli Makale),
  • Arbizzani, C., Mastragostino, M., Soavi, F., New trends in electrochemical supercapacitors, J Power Sources 100 (2001) 164-170.
  • Ternary nanocomposite SWNT/WO3/PANI thin film electrodes for supercapacitors (Makale - Diğer Hakemli Makale),
  • Bachhav, S.G., Patil, D.R., Synthesis and Characterization of Polyaniline-Multiwalled Carbon Nanotube Nanocomposites and Its Electrical Percolation Behavior, American Journal of Materials Science 5 (2015) 90-95. Barbieri, O., Hahn, M., Herzog, A., Kotz, R., Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 43, 6, 1303-1310, (2005).
  • Transparent and Flexible Supercapacitors with Single Walled Carbon Nanotube Thin Film Electrodes (Makale - Diğer Hakemli Makale),
  • Becker, H.E., U.S. Patent 2 800 616, 1957.
  • Textile Based Supercapacitors Using SWNTs/Manganese Oxide/PEDOT:PSS (Bildiri Ulusal Bildiri - Poster Sunum),
  • Beguin, F., Frackowiak, E., Supercapacitors materials, systems, and applications. 2013: WileyVCH Verlag GmbH & Co.
  • Transparent and Flexible Supercapacitor Electrodes Using SWNT Thin Films (Bildiri Ulusal Bildiri - Poster Sunum), 7- Silver Nanowire - Molybdenum Oxide Nanocomposite Electrodes for Flexible Supercapacitors (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Beidaghi, M., Gogotsi, Y., Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy & Environmental Science, 7 (2014) 867.
  • Single Walled Carbon Nanotube - Conducting Polymer Electrodes for Electrochromic Supercapacitors (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Boos, D. I., U.S. Patent 3 536 963, 1970.
  • Carbon nanotube - cobalt oxide nanocomposites for high performance supercapacitors (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Cevher, S.C., Unlu, N. A., Ozelcaglayan, A.C., Apaydin, D. H., Udum, Y.A., Toppare, L., Cirpan, A., Fused structures in the polymer backbone to investigate the photovoltaic and electrochromic properties of donor–acceptor-type conjugated polymers, J. Polym. Sci. A 51 (2013) 1933.
  • Carbon nanotube - conducting polymer electrodes for electrochromic supercapacitors (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Chae, S. H., Lee, Y. H., Carbon nanotubes and graphene towards soft electronics, Nano Convergence 1 (2014). Chen, W. C., Wen, T. C., Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors, J Power Sources 117 (2003) 273-282 Chen, Y. M., Cai, J. H., Huang, Y. S., Lee, V, Tsai, D. S., Preparation and characterization of iridium dioxide-carbon nanotube nanocomposites for supercapacitors, Nanotechnology 22 (2011) Chen, Z., Augustyn, V., Wen, J., Zhang, Y. W., Shen, M. Q., Dunn, B., Lu, Y. F., Highperformance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites, Adv Mater 23 (2011) 791 Chen, X., Lin, H., Deng, J., Zhang, Y., Sun, X., Chen, P., Fang, X., Zhang, Z., Guan, G., Peng, H., Electrochromic fiber-shaped supercapacitors, Adv. Mater., 26 (2014) 8126-8132. Clemente, A., Panero, S., Spila, E., Scrosati, B., Solid-state, polymer-based, redox capacitors, Solid State Ionics 85 (1996) 273-277. Conway, B. E., Transition from supercapacitor to battery behavior in electrochemical energystorage, J Electrochem Soc 138 (1991) 1539-1548.
  • Single Walled Carbon Nanotube - Cobalt Oxide Nanocomposites as Supercapacitor Electrode Materials (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Conway, B. E., Birss, V., Wojtowicz, J., The role and utilization of pseudocapacitance for energy storage by supercapacitors, J Power Sources 66 (1997) 1-14. Conway, B. E., Electrochemical Supercapacitors: Fundamentals and Technological Applications, Kluwer Academic/Plenum, New York, (1999).
  • Transparent and Flexible Vacuum Filtered Single Walled Carbon Nanotube Thin Film Supercapacitors (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Dupin, J.C., Gonbeau, D., Vinatier, P., Levasseur, A., Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys., 2 (2000) 1319-1324.
  • Carbon Nanotube - Tungsten Oxide - Polyaniline Ternary Nanocomposite Electrodes for Supercapacitors (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Eliad, L., Salitra, G., Soffer, A., Aurbach, D., Proton-selective environment in the pores of activated molecular sieving carbon electrodes, Journal of Physical Chemistry B, 106, 39, 10128-10134, (2002).
  • Transparent and Flexible SWNT Thin Film Supercapacitors (Bildiri - Ulusal Bildiri - Sözlü Sunum),
  • Frackowiak, E., Beguin, F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937-950.
  • Flexible Textile Based Ternary Nanocomposite Supercapacitors (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Frackowiak, E., Carbon materials for supercapacitor application, Physical Chemistry Chemical Physics, 9, 15, 1774-1785, (2007).
  • Fabrication and Characterisation of Carbon Nanotube Based Supercapacitor Electrodes (Tez (Araştırmacı Yetiştirilmesi) - Yüksek Lisans Tezi),
  • Gao, W., Singh, N., Song, L., Liu, Z., Reddy, A. L., Ci, L., Vajtai, R., Zhang, Q., Wei, B., Ajayan, P. M., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nature Nanotechnology, 6 (2011) 496-500.
  • Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils (Makale - İndeskli Makale),
  • Ge, J., Cheng, G., Chen, L.,Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films, Nanoscale, 3, 3084-3088, (2011).
  • Development of Supercapacitors with One Dimensional Nanomaterials (Tez (Araştırmacı Yetiştirilmesi) - Doktora Tezi),
  • Gu, D., Jia, C., Weidenthaler, C., Bongard, H., Spliethoff, B., Schmidt, W., Schüth, F., Highly ordered mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide, J. Am. Chem. Soc.137 (2015) 11407–11408.
  • Vertically Aligned Carbon Nanotube?Polyaniline Nanocomposite Electrodes for Supercapacitors (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Gruner, G., Carbon Nanotube Films For Transparent and Plastic Electronics., Journal of Materials Chemistry, 16, 35, 3533-3539, (2006).
  • Single Walled Carbon Nanotube Thin Film Electrodes for Transparent and Flexible Supercapacitors (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Helmholtz, H. V., Ann. Phys. 29 (1879).
  • Hadjiev, V., Iliev, M., Vergilov, I., The Raman spectra of Co3O4, J. Phys. C: Solid State Phys. 21 (1988) L199-L201.
  • Hiralal, P., Wang, H. L., Unalan, H.E., Liu, Y. L., Rouvala, M., Wei, D., Andrew, P., Amaratunga, G. A. J., Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures, Journal of Materials Chemistry, 21, 44, 17810-17815, 2011.
  • Honda, Y., Haramoto, T., Takeshige, M., Shiozaki, H., Kitamura, T., Ishikawa, M., Aligned MWCNT Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance, Electrochem. Solid-State Lett., 10 (2007) A106–A110.
  • Hu, C. C., Li, W. Y., Lin, J. Y., The capacitive characteristics of supercapacitors consisting of activated carbon fabric-polyaniline composites in NaNO3, J. Power Sources 137 (2004) 152157.
  • Hubli, R.C., Mittra, J., Suri, A.K., Reduction-dissolution of Cobalt Oxide in Acid Media: A Kinetic Study, Hydrometallurgy, 44 (1997) 125-134.
  • Hyder, M. N., Lee, S. W., Cebeci, F. C., Schmidt, D. J., Shao-Horn, Y., Hammond, P. T., Layerby-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications, ACS Nano, 5, 8552-8561, (2011).
  • Hecht, D. S., Hu, L., Irvin, G., Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Advanced Materials, 23, 13, 1482–1513, (2011).
  • Hou, Y., Cheng, Y. W., Hobson, T., Liu, J., Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes, Nano Letters, 10, 7, 2727-2733, (2010).
  • Hwang, S. G., Ryu, S. H., Yun, S. R., Ko, J. M., Kim, K. M., Ryu, K. S., Behavior of NiOMnO2/MWCNT composites for use in a supercapacitor, Mater Chem Phys 130 (2011) 507512
  • Jagadale, A.D., Kumbhar, V.S., Bulakhe, R.N., Lokhande, C.D., Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes, Energy 64 (2014) 234-241.
  • Jiang, Y. Q., Zhou, Q., Lin, L., Planar MEMS supercapacitor using carbon nanotube forests, IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, (2009).
  • Jost, K., Dion, G., Gogotsi, Y., Textile energy storage in perspective, J Mater Chem A 2 (2014) 10776-10787. Kang, Y. J., Kim, B., Chung, H., Kim, W., Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers, Synthetic Met 160 (2010) 25102514.
  • Laforgue, A., Simon, P. , Sarrazin, C., Fauvarque, J. F., Polythiophene-based supercapacitors, J Power Sources 80 (1999) 142-148.
  • Le, L.T., Ervin, M.H., Qiu, H., Fuchs B.E., Lee, W. Y., Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide, Electrochem. Commun., 13 (2011) 355–358.
  • Lee, S. W., Kim, B.-S., Chen, S., Shao-Horn, Y., Hammond, P.T., Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications, J. Am. Chem. Soc., 131 (2009) 671–679.
  • Lim, J. H., Choi, D. J., Kim, H.-K., Cho, W., Yoon, Y. S., Thin Film Supercapacitors Using a Sputtered RuO2 Electrode, J. Electrochem. Soc. 148 (2001) A275–A278
  • Lin, Y.R., Teng, H.S., A novel method for carbon modification with minute polyaniline deposition to enhance the capacitance of porous carbon electrodes, Carbon 41 (2003) 28652871 Long, J. W., Balanger, D., Brousse, T., Sugimoto, W., Sassin, M. B., Crosnier, O., Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes, MRS Bulletin, 36, 513, (2011).
  • Mallouki, M., Tran-Van, F., Sarrazin, C., Simon, P., Daffos, B., De, A., Chevrot, C., Fauvarque, J.,Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage, J Solid State Electr 11 (2007) 398-406.
  • Mastragostino, M., Arbizzani,C., Soavi, F., Conducting polymers as electrode materials in supercapacitors, Solid State Ionics, 148, 3-4, 493-498, (2002).
  • Murphy, T. C., Wright, R. B., Sutula, R. A., US department of energy electrochemical capacitor development and testing activities, Proceedings of the Symposium on Electrochemical Capacitors II 96 (1997) 258-267.
  • Pan, H., Poh, C. K., Feng, Y. P., Lin, V, Supercapacitor electrodes from tubes in tube carbon nanostructures, Chem Mater 19 (2007) 6120-6125.
  • Park, J. H., Ko, J. M., Park, O. O., Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors, J Electrochem Soc 150 (2003) A864-A867.
  • Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y.,Simon, P., Ultrahighpower micrometre-sized supercapacitors based on onion-like carbon, Nature Nanotechnology, 5 (2010) 651-654.
  • Peng, C., Zhang, S. W., Jewell, D., Chen, G. Z., Carbon nanotube and conducting polymer composites for supercapacitors, Prog Nat Sci 18 (2008) 777-788.
  • Raymundo-Pinero, E., Khomenko, V., Frackowiak, E., Beguin, F., Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. Journal of the Electrochemical Society, 152, 1, A229-A235, (2005).
  • Ren, X. B., Lu, H. Y., Lin, H. B., Liu, Y. N., Xing, Y., Preparation and characterization of the Ti/IrO2/WO3 as supercapacitor electrode materials, Russ J Electrochem. 46 (2010) 77-80.
  • Ryoo, R., Joo, S.H., Jun, S., Synthesis of highly ordered carbon molecular sieves via templatemediated structural transformation, Journal of Physical Chemistry B, 103, 37, 7743-7746, (1999).
  • Ryu, K. S., Kim, K. M., Park, N. G., Park, Y. J., Chang, S. H., Symmetric redox supercapacitor with conducting polyaniline electrodes, J Power Sources 103 (2002) 305-309
  • Sarangapani, S., Tilak, B. V., Chen, C. P., Materials for electrochemical capacitors - theoretical and experimental constraints, J Electrochem Soc 143 (1996) 3791-3799.
  • Sharma, R. K., Zhai, L., Multiwall carbon nanotube supported poly(3,4ethylenedioxythiophene)/manganese oxide nano-composite electrode for super-capacitors, Electrochimica Acta, 54, 27, 7148-7155, (2009).
  • Sheng, K., Sun, Y., Li, C., Yuan, W., Shi, G.,Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Sci. Rep., 2 (2012) 247.
  • Simon, P., Gogotsi, Y., Materials for electrochemical capacitors, Nat Mater 7 (2008) 845-854. Simon, P., Gogotsi, Y., Dunn, B., Where Do Batteries End and Supercapacitors Begin?, Science 343 (2014) 1210–1211.
  • Sivakkumar, S. R., Ko, J. M., Kim, D. Y., Kim, B. C., Wallace, G. G., Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors, Electrochim Acta 52 (2007) 7377-7385.
  • Sivakkumar, S. R., Kim, W. J., Choi, J. A., MacFarlane, D. R., Forsyth, M., Kim, D.W., Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors, J Power Sources 171 (2007) 1062-1068
  • Song, R. Y., Park, J. H., Sivakkumar, S. R., Kim, S. H., Ko, J. M., Park, D. Y., Jo, S. M., Kim, D. Y., Supercapacitive properties of polyaniline/Nafion/hydrous RuO2 composite electrodes, J Power Sources 166 (2007) 297-301. Stoller, M. D., Ruoff, R. S., Best practice methods for determining an electrode material's performance for ultracapacitors, Energ Environ Sci. 3 (2010) 1294- 1301.
  • Tang, C.W., Wang, C.B., Chien, S.H., Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS, Thermochim. Acta. 473 (2008) 68–73.
  • Teo, K.B., Singh, C., Chhowalla, M., Milne, W. I., Catalytic synthesis of carbon nanotubes and nanofibers, Encyclopedia of nanoscience and nanotechnology, 10, 1, (2003).
  • Wang, Q., Wen, Z. H., Li, V, Carbon nanotubes/TiO2 nanotubes hybrid supercapacitor, J Nanosci Nanotechno 7 (2007) 3328-3331.
  • Wang, H., Peng, C., Peng, F., Yu, H., Yang, J., Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors, Materials Science and Engineering B, 176, 1073– 1078, (2011).
  • Wang, G. P., Zhang, L., Zhang, J. J., A review of electrode materials for electrochemical supercapacitors, Chem Soc Rev 41 (2012) 797-828.
  • Wang, W. J. , Hao, Q. L., Lei, W., Xia, X. F., Wang, X., Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials, RSC Advances 2 (2012) 1026810274.
  • Wilson, G. J., Looney, M. G., Pandolfo, A. G., Enhanced capacitance textile fibres for supercapacitors via an interfacial molecular templating process, Synthetic Metals 160 (2010) 655-663.
  • Wu, N.L., Nanocrystalline oxide supercapacitors. Materials Chemistry and Physics, 75, 1-3, 611, (2002).
  • Wei, D., Scherer, M.R.J., Bower, C., Andrew, P., Ryhä nen, T., Steiner, U., A nanostructured electrochromic supercapacitor, Nano Lett., 12 (2012) 1857-1862.
  • Yamashita, T., Hayes, P., Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441.
  • Yuksel, R., Durucan, C., Unalan, H.E., Ternary nanocomposite SWNT/WO3/PANI thin film electrodes for supercapacitors, J. Alloys. Comp. 658 (2016) 183-189.
  • Zhang, H., Cao, G. P., Wang, Y. Z., Yang, Y. S., Shi, Z. J., Gu, Z. N., Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano Letters, 8,2664, (2008).
  • Zhang, Y. P., Sun, X. W. , Pan, L. K., Li, H. B., Sun, Z., Sun, C. Q., Tay, B. K., Carbon nanotubezinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors, J Alloy Compd 480 (2009) L17-L19.
  • Zhao, X., Johnston, C., Grant, P. S., A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode, J Mater Chem 19 (2009) 8755-8760.
APA ÜNALAN H, DURUCAN C, ÇIRPAN A (2017). Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. , 1 - 128.
Chicago ÜNALAN Hüsnü Emrah,DURUCAN Caner,ÇIRPAN Ali Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. (2017): 1 - 128.
MLA ÜNALAN Hüsnü Emrah,DURUCAN Caner,ÇIRPAN Ali Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. , 2017, ss.1 - 128.
AMA ÜNALAN H,DURUCAN C,ÇIRPAN A Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. . 2017; 1 - 128.
Vancouver ÜNALAN H,DURUCAN C,ÇIRPAN A Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. . 2017; 1 - 128.
IEEE ÜNALAN H,DURUCAN C,ÇIRPAN A "Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi." , ss.1 - 128, 2017.
ISNAD ÜNALAN, Hüsnü Emrah vd. "Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi". (2017), 1-128.
APA ÜNALAN H, DURUCAN C, ÇIRPAN A (2017). Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. , 1 - 128.
Chicago ÜNALAN Hüsnü Emrah,DURUCAN Caner,ÇIRPAN Ali Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. (2017): 1 - 128.
MLA ÜNALAN Hüsnü Emrah,DURUCAN Caner,ÇIRPAN Ali Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. , 2017, ss.1 - 128.
AMA ÜNALAN H,DURUCAN C,ÇIRPAN A Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. . 2017; 1 - 128.
Vancouver ÜNALAN H,DURUCAN C,ÇIRPAN A Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi. . 2017; 1 - 128.
IEEE ÜNALAN H,DURUCAN C,ÇIRPAN A "Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi." , ss.1 - 128, 2017.
ISNAD ÜNALAN, Hüsnü Emrah vd. "Karbon Nanotüplerle Süperkapasitörlerin Geliştirilmesi". (2017), 1-128.