1 0

Proje Grubu: MAG Sayfa Sayısı: 138 Proje No: 116M202 Proje Bitiş Tarihi: 01.03.2019 Metin Dili: Türkçe İndeks Tarihi: 27-02-2020

Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi

Öz:
Tasarlanmıs Çimentolu Kompozitler (TÇK) tasarımlarından kaynaklanan çoklu mikro çatlaklanma davranısları ve bünyelerinde bulunan yüksek miktardaki baglayıcılar sayesinde kendiliginden iyilesme özelligine sahip yüksek performanslı lif donatılı çimentolu kompozitlerdir. Ancak bu kompozitler tasarımları geregi özel malzemeler ve belirli karısım oranlarında üretilebilmektedir. Bu projenin amacı tane boyutu optimizasyonu yöntemi ile TÇK tasarımı yapmaktır. Proje kapsamında literatürdeki TÇK tasarımları referans olarak alınarak, modifiye edilmis Andreasen ve Andersen modeli uygulanarak yerel malzemelerle TÇK tasarımı ve üretimi gerçeklestirilmistir. Bu amaçla, tane boyutu optimizasyonu ile tasarlanan 8 TÇK karısımı ile literatürde sıklıkla karsılasılan 4 standart TÇK karısımı olmak üzere toplam 12 farklı TÇK?nın mekanik özellikleri ve kendiliginden iyilesme performansları incelenmistir. Proje kapsamında literatürdeki TÇK karısımları dikkate alınarak, bu karısımlar içerisindeki granüler malzemelerin tane boyutu dagılımlarına baglı olarak, modifiye edilmis Andreasen ve Andersen yöntemiyle baglayıcı olan ve olmayan kısım ayrı ayrı ve birlikte olmak üzere çesitli sekillerde optimize edilmistir. Bu amaçla kullanılan toz malzemeler çimento, uçucu kül, ögütülmüs granüle yüksek fırın cürufu, silis dumanı ve farklı boyutlardaki kuvars kumlarıdır. Böylece hem baglayıcı malzemelerin daha etkin kullanımının saglanması, hem de optimizasyonla elde edilmis sıkı içyapının mekanik ve kendiliginden iyilesme davranısına etkisinin incelenmesi hedeflenmistir. Tüm TÇK karısımlarının 7, 28 ve 90. günlerde olmak üzere basınç dayanımı ve egilme özellikleri belirlenmistir. Kendiliginden iyilesme performansının belirlenmesi için ise 28.günde ön yükleme ile hasara ugratılan numunelerin egilme altındaki davranısları, ultrases geçis hızları, elektriksel özdirenç degerleri, hızlı klor iyonu geçirimliligi, kılcal su emme indeksleri ve çatlak genislikleri ön yüklemeyi takip eden 0, 15, 30, 60 ve 90. günlerde belirlenmistir. Proje sonucunda tüm ECC karısımlarında kendiliginden iyilesme özelligi elde edilmistir.
Anahtar Kelime: kendiliginden iyilesme tane boyutu optimizasyonu Tasarlanmıs Çimentolu Kompozitler

Konular: İnşaat Mühendisliği
Erişim Türü: Erişime Açık
  • Aldea, C., Song W., Popovics J. S., Shah S. P., 2000. “Extent of healing of cracked normal strength concrete”, Journal of Materials in Civil Engineering, 12, 92–96.
  • Alyousif , A., Lachemi M., Yildirim G., Sahmaran M. 2015. “Effect of self-healing on the different transport properties of cementitious composites”, Journal of Advanced Concrete Technology, 13, 112–123.
  • Andersen P. J., Johansen, V., 1991. “Particle packing and concrete properties”, Material Science of Concrete: II, Editörler: Skalny J., Mindess S., Westerville, Ohio: The American Ceramic Society Inc.
  • Andreasen, A. H. M. and Andersen, J., 1930. “Über die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten)”. Colloid & Polymer Science, 50(3), 217‐228, İçinde: Wang, X., Wang K., Taylor P., Morcous G., 2014.
  • “Assessing particle packing based self-consolidating concrete mix design method”, Construction and Building Materials”, 70, 439–452.
  • ASTM C 109, 2016. “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars”, American Society for Testing and Materials.
  • ASTM C 1202, 2012. “Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration”, American Society for Testing and Materials.
  • ASTM C 597, 2016. “Standard Test Method for Pulse Velocity Through Concrete”, American Society for Testing and Materials.
  • ASTM C1260, 2014. “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)”, American Society for Testing and Materials.
  • ASTM C1585, 2013. “Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes”, American Society for Testing and Materials.
  • Clear, C. A. 1985. “The Effects of Autogenous Healing upon the Leakage of Water through Cracks in Concrete”, Slough, Buckinghamshire: Wexham Springs.
  • Diamond, S., Sahu, S., 2006. “Densified silica fume: particle sizes and dispersion in Concrete” Materials and Structures, 39, 849–859.
  • Dinger, D. R., Funk, J. E., 1997. “Particle-packing phenomenon and their application in materials processing”, MRS Bulletin, 22(12), 19-23.
  • Edvardsen, C. 1999. “Water permeability and autogenous healing of cracks in concrete”, ACI Materials Journal, 96, 448–455.
  • Fan, S., Li, M., 2015. “X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites”, Smart Materials and Structures, 24,1, 015021.
  • Fuller, W. B., Thompson S. E. 1907. “The laws of proportioning concrete”, Transactions of the American Society of Civil Engineers, 33, 222–298. İçinde: Wang, X., Wang K., Taylor P., Morcous G., 2014. “Assessing particle packing based self-consolidating concrete mix design method”, Construction and Building Materials 70, 439–452.
  • Funk, J. E., Dinger D. R. 1994. “Predictive Process Control of Crowded Particulate Suspensions”, Applied to Ceramic Manufacturing (e-kitap), Boston: Kluwer Academic Publishers.
  • Gagne, R., Argouges M., 2012. “A study of the natural self-healing of mortars using airflow measurements”, Materials and Structures, 45, 1625–1638.
  • Hunger, M. 2010. “An integral design concept for ecological self-compacting concrete”, PhD Thesis, Eindhoven, the Netherlands: Eindhoven University of Technology.
  • Ismail M., Toumi A., Francois R., Gagne R. 2004. “Effect of crack opening on local diffusion of chloride inert materials”, Cement and Concrete Research, 34, 711–716.
  • Jacobsen, S., Marchand J., Homain H., 1995. “SEM observations of the microstructure of frost deteriorated and self-healed concrete”, Cement and Concrete Research, 25, 1781–1790.
  • JSCE, Japan Society of Civil Engineers. “Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)”, http://www.jsce.or.jp/committee/concrete /e/hpfrcc_JSCE.pdf. Son erişim tarihi: 14.05.2012.
  • Kan, L. L., Shi H. S., Sakulich A. R., Li V.C. 2010. “Self-healing characterization of engineered cementitious composite materials”, ACI Materials Journal, 107, 617–624.
  • Kanda, T., Saito T., Sakata N. 2003. “Tensile and anti-spalling properties of direct sprayed ECC”, Advanced Concrete Technology, 1(3), 269-282.
  • Keskin, S. B. 2012. “Dimesional Stability of Engineered Cementitious Composites”, PhD Thesis, Graduate School of Natural and Applied Sciences, Ankara: Orta Doğu Teknik Üniversitesi.
  • Kumar, S. V., Santhanam, M., 2003. “Particle packing theories and their application in concrete mixture proportioning: A review”, Indian Concrete Journal 77(9):1324-1331
  • Lepech M. D., Li, V. C., 2009. “Water permeability of engineered cementitious composites”, Cement and Concrete Composites, 31(10), 744–753.
  • Lepech, M. D., Li, V. C., Robertson R. E., Keoleian G.A. 2008. "Design of Green Engineered Cementitious Composites for Improved Sustainability", ACI Materials Journal, 105(6), 567- 575.
  • Li, M., Li, V. C. 2011. “Cracking and healing of engineered cementitious composites under chloride environment”, ACI Materials Journal, 108, 333–340.
  • Li, V. C. 1998. “Engineered cementitious composites - tailored composites through micromechanical modeling”, Fiber Reinforced Concrete: Present and the Future. Editörler: Banthia, N., Bentur A., Mufti A., Montreal, Canada: Canadian Society for Civil Engineering.
  • Li, V. C., 2001. “J-integral applications to characterization and tailoring of cementitious materials”, Multiscale deformation and fracture in materials and structures. Editörler: Chuang, T. J., Rudnicki J.W., The J.R. Rice 60th Anniversary Volume, 385-406 Dordrecht: Kluwer Academic Publishers.
  • Li, V. C., 2002. “Advances in ECC research”, SP 206-23 ACI Special Publication on Concrete: Material Science to Applications, 373-400.
  • Li, V. C., 2003. “On engineered cementitious composites (ECC) – a review of the material and ıts applications”, Journal of Advanced Concrete Technology, 1, 215-230
  • Li, V. C., Fischer G., Kim Y. Y., Lepech M., Qian S., Weimann M., Wang S. 2003. “Durable link slabs for jointless bridge decks based on strain-hardening cementitious composites”, Research Report RC-1438, Michigan Department of Transportation.
  • Li, V. C., Herbert E., 2012. “Robust self-healing concrete for sustainable infrastructure”, Journal of Advanced Concrete Technology, 10, 207–218.
  • Li, V. C., Kanda T. 1998.” Engineered cementitious composites for structural applications”, Journal of Materials in Civil Engineering, 10(2), 66-69.
  • Li, V. C., Lepech M. 2004. “Crack resistant concrete material for transportation construction”, Transportation Research Board 83rd Annual Meeting, Washington D.C.
  • Li, V. C., Leung C. K. Y., 1992. “Steady state and multiple cracking of short random fiber composites”, ASCE Journal of Engineering Mechanics, 188, 2246-2264.
  • Li, V. C., Mishra D. K., Wu H. C. 1995. “Matrix design for pseudo strain-hardening fiber reinforced cementitious composites”, Materials and Structures, 28(10), 586-595.
  • Li, V. C., Mishra D.K., Naaman A. E., Wight J. K., La Fave J. M., Wu H. C., Inada Y. 1994.” On the shear behavior of engineered cementitious composites”, Journal of Advanced Cement Based Materials, 1(3), 142-149.
  • Li, V. C., Wang S., Wu C. 2001. “Tensile strain-hardening behaviour of PVA-ECC”, ACI Materials Journal, 98(6), 483-492.
  • Li, V. C., Wu C., Wang S., Ogawa A. and Saito T. C. 2002. “Interface tailoring for strainhardening PVA-ECC”, ACI Materials Journal, 99(5), 463-472.
  • Li., M., Şahmaran M., Li V. C. 2007. “Effect of cracking and healing on durability of engineered cementitious composites under marine environment", High Performance Fiber Reinforced Cement Composites (HPFRCC5), Mainz, Germany.
  • Lin, Z., Kanda T., Li V. C., 1999. “On interface property characterization and performance of fiber reinforced cementitious composites”, Concrete Science and Engineering, 1, 173-184
  • Miyazato, S., Hiraishi Y. 2005. “Transport properties and steel corrosion in ductile fiber reinforced cement composites”, 11th International Conference on Fracture Turin, Italy.
  • Mueller, F. V., Wallevik O. H., Khayat K. H. 2014. “Linking solid particle packing of Eco-SCC to material performance”, Cement & Concrete Composites, 54, 117–125.
  • Ozbay, E., Sahmaran M., Lachemi M., Yucel H.E. 2013-a. “Self-healing of microcracks in high volume fly ash incorporated engineered cementitious composites”, ACI Materials Journal, 110, 33–44.
  • Ozbay, E., Sahmaran M., Yucel H. E., Erdem T. K., Lachemi M., Li V.C. 2013-b. “Effect of sustained flexural loading on self-healing of engineered cementitious composites”, Journal of Advanced Concrete Technology, 11, 167–179.
  • Qian, S., Zhou J., De Rooij M. R., Schlangen E., Ye G., Van Breugel K. 2009. “Self-healing behavior of strain hardening cementitious composites incorporating local waste materials”, Cement and Concrete Composites, 31, 613–621.
  • Qian, S., Zhou J., Schlangen E. 2010. “Influence of curing condition and precracking time on the self-healing behavior of engineered cementitious composites”, Cement and Concrete Composites, 32, 686–693.
  • Reinhardt, H. W., Jonkers, H., Van Tittelboom, K., Snoeck, D., De Belie, N., De Muynck, W. 2013., “Recovery against environmental action”, Self-healing Phenomena in Cement-based Material, RILEM State-of-the-Art-Reports, Editörler: M. de Rooji, K. Van Tittelboom, N. De Belie, E. Schlangen , Dordrecht: Springer.
  • Reinhardt, H., Jooss M. 2003. “Permeability and self-healing of cracked concrete as a function of temperature and crack width”, Cement and Concrete Research, 33, 981–985.
  • Sahmaran M., Lachemi M., Hossain K.M.A., Ranade R., Li, V.C. 2009. "Influence of Aggregate Type and Size on Ductility and Mechanical Properties of Engineered Cementitious Composites", ACI Materials Journal, 106(3), 308-316.
  • Sahmaran, M., Li M., Li V. C. 2007. “Transport properties of engineered cementitious composites under chloride exposure”, ACI Materials Journal, 104(6), 604-611.
  • Sahmaran, M., Li V. C. 2008. “Durability of mechanically loaded engineered cementitious composites under highly alkaline environments”, Cement and Concrete Composites, 30(2), 72-81.
  • Sahmaran, M., Li V. C. 2009-a. “Durability properties of micro-cracked ECC containing high volumes fly ash”, Cement and Concrete Research, 39(11), 1033-1043.
  • Sahmaran, M., Li, V. C. 2009-b. ”Influence of microcracking on water absorption and sorptivity of ECC”, Materials and Structures, 42(5), 593-603.
  • Sahmaran, M., Li V. C., 2007. “De-icing salt scaling resistance of mechanically loaded engineered cementitious composites”, Cement and Concrete Research, 37, 1035–1046.
  • Sahmaran, M., Li V. C., Andrade C. 2008. “Corrosion resistance performance of steelreinforced engineered cementitious composite beams”, ACI Materials Journal, 105(3), 243- 250.
  • Sahmaran, M., Yildirim G., Erdem T.K. 2013. “Self-healing capability of cementitious composites incorporating different supplementary cementitious materials”, Cement and Concrete Composites. 35, 89–101.
  • Sahmaran, M., Yıldırım G., Hasıloglu G. A., Keskin, S. B., Keskin, Ö. K., Lachemi, M., 2017. “Self-Healing of Cementitious Composites to Reduce High CO2 Emissions”, ACI Mater. J., 114, 93-104.
  • Sahmaran, M., Yildirim G., Ozbay E., Ahmed K., Lachemi M.2014. “Self-healing ability of cementitious composites: effect of addition of pre-soaked expanded perlite”, Magazine of Concrete Research, 66, 409–419.
  • Shi, C., 2004. “Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results”, Cement Concrete Research, 34, 537–545.
  • Siad, H., Alyousif A., Keskin Ö. K., Keskin B. S., Lachemi M., Sahmaran M., Hossain A. 2015. “Influence of limestone powder on mechanical, physical and self-healing behavior of Engineered Cementitious Composites”, Construction and Building Materials, 99, 1-10.
  • Spragg, R., Bu, Y., Snyder, K., Bentz, D., Weiss, J., 2013. “Electrical Testing of Cement-Based Materials: Role of Testing Techniques, Sample Conditioning and Accelerated Curing”, Joint Transportation Research Program, West Lafayette, Indiana: Indiana Department of Transportation and Purdue University.
  • Talbot, A. N., Richart, F. E., 1923. “The strength of concrete in relation to the cement, aggregates and water.” University of Illinois Engineering Experiment Station, Bulletin No. 137.
  • Wang, S., Li V. C. 2007.” Engineered cementitious composites with high-volume fly ash”, ACI Materials Journal, 104(3), 233-241.
  • Wang, S., Li V. C., 2007. “Engineered cementitious composites with high-volume fly ash”. ACI Mater. J., 2007; 104, 233–41.
  • Wang, X., Wang K., Taylor P., Morcous G., 2014. “Assessing particle packing based selfconsolidating concrete mix design method”, Construction and Building Materials, 70, 439–452.
  • Wu, M., Johannesson B., Geiker M. 2012. “A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material”, Construction and Building Materials, 28, 571–583.
  • Yang, E. H., Li V. C., 2007. “Numerical study on steady- state cracking of composites”, Composites Science and Technology, 67, 151-156.
  • Yang, E. H., Li V.C., 2010, “Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model”, Construction and Building Materials, 24(2), 130-139.
  • Yang, Y., Lepech M. D., Yang E.H., Li V. C. 2009. “Autogenous healing of engineered cementitious composites under wet–dry cycles”, Cement and Concrete Research, 39, 382– 390.
  • Yildirim, G., Alyousif A., Sahmaran M., Lachemi M. 2015-b. “Assessing the self-healing capability of cementitious composites under increasing sustained loading”, Advances in Cement Research, 27(10), 581-592.
  • Yildirim, G., Keskin Ö. K., Keskin S. B., Sahmaran M., Lachemi M. 2015-a. “A review of intrinsic self-healing capability of engineered cementitious composites: Recovery of transport and mechanical properties”, Construction and Building Materials, 101, 10–21.
  • Yu, R., Spiesz P., Brouwers H. J. H. 2014. “Mix design and properties assessment of Ultra- High Performance Fibre Reinforced Concrete (UHPFRC)”, Cement and Concrete Research, 56, 29–39.
  • Yu, R., Spiesz P., Brouwers H. J. H. 2015-a. “Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses”, Cement & Concrete Composites, 55, 383–394.
  • Yu, R., Spiesz P., Brouwers H. J. H. 2015-b. “Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres”, Construction and Building Materials, 79, 273–282.
  • Zhu, Y., Zhang Z., Yang Y., Yao Y. 2014. ”Measurement and correlation of ductility and compressive strength for engineered cementitious composites (ECC) produced by binary and ternary systems of binder materials: Fly ash, slag, silica fume and cement”, Construction and Building Materials, 68, 192–198.
APA KESKİN S, KASAP KESKİN Ö (2019). Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. , 1 - 138.
Chicago KESKİN Süleyman Bahadır,KASAP KESKİN Özlem Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. (2019): 1 - 138.
MLA KESKİN Süleyman Bahadır,KASAP KESKİN Özlem Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. , 2019, ss.1 - 138.
AMA KESKİN S,KASAP KESKİN Ö Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. . 2019; 1 - 138.
Vancouver KESKİN S,KASAP KESKİN Ö Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. . 2019; 1 - 138.
IEEE KESKİN S,KASAP KESKİN Ö "Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi." , ss.1 - 138, 2019.
ISNAD KESKİN, Süleyman Bahadır - KASAP KESKİN, Özlem. "Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi". (2019), 1-138.
APA KESKİN S, KASAP KESKİN Ö (2019). Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. , 1 - 138.
Chicago KESKİN Süleyman Bahadır,KASAP KESKİN Özlem Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. (2019): 1 - 138.
MLA KESKİN Süleyman Bahadır,KASAP KESKİN Özlem Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. , 2019, ss.1 - 138.
AMA KESKİN S,KASAP KESKİN Ö Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. . 2019; 1 - 138.
Vancouver KESKİN S,KASAP KESKİN Ö Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi. . 2019; 1 - 138.
IEEE KESKİN S,KASAP KESKİN Ö "Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi." , ss.1 - 138, 2019.
ISNAD KESKİN, Süleyman Bahadır - KASAP KESKİN, Özlem. "Tane Boyutu Optimizasyonunun Lif Donatılı Yüksek Performanslı Çimentolu Kompozitlerin Mekanik Ve Kendiliginden Iyilesme Davranısına Etkisi". (2019), 1-138.