Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu

19 4

Proje Grubu: KBAG Sayfa Sayısı: 74 Proje No: 116Z100 Proje Bitiş Tarihi: 15.01.2018 Metin Dili: Türkçe İndeks Tarihi: 27-01-2020

Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu

Öz:
Bu çalışmada organik düzenleyici kullanılarak modifiye edilmiş Kloisit 30B, C30B, ve Kloisit 15A, C15A içeren polikaprolakton, PCL, nanokompozitleri, çeşitli miktarlarda benzen diboronik asit, BDBA, çinko borat, ZnB, ve borik asit, H3BO3 içeren polikaprolakton kompozitleri ve hem nanokil hem de bor bileşikleri içeren PCL nanokompozitleri hem çözelti de hem de eriyikte harmanlama yöntemleri ile hazırlanmış ve örneklerin morfolojik ısıl ve mekanik özellikleri saptanmıştır.
Anahtar Kelime: mekanik ve ısıl özellikler elektroeğirme boron bileşikleri nankcompozitler Polikaprolakton

Konular: Kimya, Analitik Nanobilim ve Nanoteknoloji Kimya, Uygulamalı Polimer Bilimi Malzeme Bilimleri, Kompozitler
Erişim Türü: Erişime Açık
  • Ahmed, J., Auras, R., Kijchavengkul, T., Varshney, S. K. 2012. “Rheological, thermal and structural behavior of poly(ε-caprolactone) and nanoclay blended films”, Journal of Food Engineering, 111(4), 580–589.
  • Alongi, J; Malucelli, G 2012. “Cotton fabrics treated with novel oxidic phases acting as effective smoke suppressants” Carb Polym 90:251-260Anderson, K. S., K.M. Schreck, M.A. Hillmyer, 2008 “Toughening Polylactide” Polym. Rev. 48, 85-108.
  • Ayrilmis, N. 2013. “Combined effects of boron and compatibilizer on dimensional stability and mechanical properties of wood/HDPE composites” Comp Part B Engin 44 :745-749.
  • Ayrilmis, N., Akbulut, T., Dundar, T., 2012. “Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites” Const Build Mat 33 63-69.
  • Chrissafis, K., Antoniadis, G., Paraskevopoulos, K. M., Vassiliou, A., & Bikiaris, D. N. 2007. “Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(caprolactone) nanocomposites” Composites Science and Technology, 67, 2165–2174.
  • Cakmakci, E., Mulazim, Y., Kahraman, M V., 2012. “Preparation and characterization of boron containing thiol-ene photocured hybrid coatings” Prog Org Coat 75:28-32.
  • De Seta, F., Schmidt, M., Vu, B., Essmann, M., Larsen, B. 2009. “Antifungal mechanisms supporting boric acid therapy of Candida vaginitis”. Journal of Antimicrobial Chemotherapy, 63, 325–336.
  • Demirci, S., Kaya, M. S., Doğan, A., Kalay, Ş., Altın, N. Ö., Yarat, A., Şahin, F. 2015. “Antibacterial and cytotoxic properties of boron-containing dental composite”. Turkish J of Biology 39(3), 417–426.
  • Di, Y., Iannace, S., Di Maio, E., & Nicolais, L. 2003. “Nanocomposites by melt intercalation based on polycaprolactone and organoclay”. Journal of Polymer Science, Part B: Polymer Physics, 41, 670–678.
  • Ding, S. D., Wang, Y. Z., Rudd, C. D. 2009. “Boron trifluoride-catalyzed degradation of poly-- caprolactone at ambient temperature”. Polymer Degradation and Stability, 94, 1515–1519. Gao, M.; Sun, C. Y.; Wang, C. X. 2006. “Thermal degradation of wood treated with flame retardants” J Therm Anal Calor 85:765-769.
  • Hong SI, Rhim JW. 2008. “Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol”. 8(11):5818-24.
  • Ishikawa, T., Mizuno, K., Kajiya, T., 2005. “Structural decay and flame retardancy of wood as a natural polymer” Comb Scie Tech 177: 819-842.
  • Jimenez, G., Ogata, N., Kawai, H., & Ogihara, T. 1996. “Structure and Thermal / Mechanical Properties of Poly ( e -caprolactone ) – Clay Blend” (November), 2211–2220.
  • Karacan, I., Soy, T 2013. “Structure and properties of oxidatively stabilized viscose rayon fibers impregnated with boric acid and phosphoric acid prior to carbonization and activation steps” J Mat Sci 48: 52009-2021.
  • Kurt, R.., Mengeloglu, F.., Meric, H. 2012. “The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of wood-HDPE polymer composites” Eur J Wood Wood Pro 70: 177-182.
  • Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H.-S., Cho, C. S. 2003. “A novel degradable polycaprolactone networks for tissue engineering. Biomaterials”, 24(5), 801–808.
  • Lepoittevin, B., Devalckenaere, M., Pantoustier, N., Alexandre, M., Kubies, D., Calberg, C., Dubois, P. 2002. “Poly (ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties”. Polymer, 43, 4017–4023.
  • Lepoittevin, B., Pantoustier, N., Alexandre, M., Calberg, C., Jérôme, R., Dubois, P. 2002. “Polyester layered silicate nanohybrids by controlled grafting polymerization”. Journal of Materials Chemistry, 12, 3528–3532.
  • Lepoittevin, B., Pantoustier, N., Devalckenaere, M., Alexandre, M., Calberg, C., Jérôme, R., Dubois, P. 2003. “Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation: a masterbatch process”. Polymer, 44, 2033–2040.
  • Lepoittevin, B., Pantoustier, N., Devalckenaere, M., Alexandre, M., Kubies, D., Calberg, C., Dubois, P. 2002. “Poly(ε-caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide”. Macromolecules, 35, 8385–8390.
  • Liu, H., Han, C., Dong, L. 2010. “Study of the biodegradable poly(ε-caprolactone)/clay nanocomposite foams”. Journal of Applied Polymer Science, 115(5), 3120–3129.
  • Liu, L.,Fu, M., Wang, Z. 2015.”Synthesis of Boron-Containing Toughening Agents and Their Application in Phenolic Foams” Ind. Eng. Chem. Res., 54, 1962-1970.
  • Marras, S. I., Kladi, K. P., Tsivintzelis, I., Zuburtikudis, I., & Panayiotou, C. 2008. “Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure”. Acta Biomaterialia, 4, 756–65.
  • Messersmith, P. B., Giannelis, E. P. 1993. “Polymer-Layered Silicate Nanocomposites: In Situ Intercalative Polymerization of e-Caprolactane in Layered Silicates”. Chemistry of Materials, (16), 1064–1066.
  • Messersmith, P. B., Giannelis, E. P. 1995. “Synthesis and barrier properties of poly(ɛ- caprolactone)-layered silicate nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry”, 33, 1047–1057.
  • Moussaif, N., Crespo, C., Meier, J. G., Jimenez, M. a. 2012. “Synergistic reinforcement of nanoclay and mesoporous silicate fillers in polycaprolactone: The effect of nanoclay on the compatibility of the components”. Polymer, 53(17), 3741–3748.
  • Nakanishi, S., Hashimoto, T 1998. “Flame retardation of cellulosic fibers as characterized by thermal degradation behavior” Text Research J, 68:807-813.
  • Nitya, G., Nair, G. T., Mony, U., Chennazhi, K. P., Nair, E. “Electrospun PCL/nanoclay composite scaffold for bone tissue engineering”. Journal of S. V. 2012. In vitro evaluation of Materials Science: Materials in Medicine, 23, 1749–1761.
  • Özdemir E., Hacaloğlu, J. 2017. “Poly(methyl methacrylate) organoclay composites., interactions of organic modifier with the polymer effecting thermal degradation behavior” Europ Polym J. 95, 474-481
  • Özdemir E., Hacaloğlu, J. 2017. “Polylactide/organically modified montmorillonite composite fibers” J Anal Appl Pyrol 124, 186-194.
  • Özdemir E., Hacaloğlu, J. 2017. “Characterizations of PLA-PEG blends involving organically modified montmorillonite” J Anal Appl Pyrol 127, 343-349.
  • Özdemir E., Hacaloğlu, J. 2018. “Thermal degradation of Polylactide/poly(ethylene glycol) fibers and composite fibers involving organoclay” J Anal Appl Pyrol 129, 181-188.
  • Pantoustier, N., Lepoittevin, B., Alexandre, M., Kubies, D., Calberg, C., Jerome, R., Dubois, P. 2002. “Biodegradable Polyester Layered Silicate Nanocomposites Based on Poly( daprolactone)”. Polymer Engineering & Science, 42(9), 1928–1937.
  • Peng, H., Han, Y., Liu, T., Tjiu, W. C., He, C. 2010. “Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation”. Thermochimica Acta, 502, 1–7.
  • Ray, S. S., Bousmina, M. 2005. “Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world”. Progress in Materials Science, 50, 962–1079.
  • Singh, N. K., Purkayastha, B. Das, Roy, J. K., Banik, R. M., Yashpal, M., Singh, G., Maiti, P. 2010. “Nanoparticle-Induced Controlled Biodegradation and Its Mechanism in Poly(ε- caprolactone)” ACS Applied Materials & Interfaces, 2(1), 69–81.
  • Sharma, A., Payne, S., Katti, K. S., Katti, D. R. 2015. “Evaluating Molecular Interactions in Polycaprolactone-Biomineralized Hydroxyapatite Nanocomposites using Steered Molecular Dynamics”. Jom, 67(4), 733–743.
  • Tai, Q., Song, L., Feng, H., 2012. “Investigation of a combination of novel polyphosphoramide and boron-containing compounds on the thermal and flame-retardant properties of polystyrene” J Polym Resea 19:9763
  • Tomak, E D.., Baysal, E., Peker, H. 2012. “The effect of some wood preservatives on the thermal degradation of Scots pine” Thermochi Acta 547: 76-82
  • Ullah, S., Ahmad, F., Yusoff, P.S. Megat M. 2013. Effect of boric acid and melamine on the intumescent fire-retardant coating composition for the fire protection of structural steel substrates J Appl Polym Sci 128: 2983-2993
  • Urbanczyk, L., Calberg, C., Stassin, F., Alexandre, M., Jérôme, R., Jérôme, C., Detrembleur, C. 2008. “Synthesis of PCL/clay masterbatches in supercritical carbon dioxide”. Polymer, 49, 3979–3986.
  • Xu, JZ., Gao, M., Guo, HZ., 2002. “Study on the thermal degradation of cellulosic fibers treated with flame retardants” J Fire Scie 20: 227-235
  • Yahiaoui, F., Benhacine, F., Ferfera-Harrar, H., Habi, A., Hadj-Hamou, A. S.,. Grohens, Y. 2015. “Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications”. Polymer Bulletin, 72, 235–254.
  • Yang, L., Wang, X., Yu, Bin., 2012. “Effect of borates on thermal degradation and flame retardancy of epoxy resins using polyhedral oligomeric silsesquioxane as a curing agent” Thermochi Acta 535:71-78
  • Zhu, Y., Yuan L., Liang G., Gu, A., 2015. “Green flame retarding bismaleimide resin with simultaneously good processing characteristics, high toughness and outstanding thermal stability based on a multi-functional organic boron compound” Polym. Deg. Stab., 118, 33-44.
APA HACALOĞLU J (2018). Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. , 1 - 74.
Chicago HACALOĞLU Jale Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. (2018): 1 - 74.
MLA HACALOĞLU Jale Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. , 2018, ss.1 - 74.
AMA HACALOĞLU J Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. . 2018; 1 - 74.
Vancouver HACALOĞLU J Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. . 2018; 1 - 74.
IEEE HACALOĞLU J "Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu." , ss.1 - 74, 2018.
ISNAD HACALOĞLU, Jale. "Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu". (2018), 1-74.
APA HACALOĞLU J (2018). Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. , 1 - 74.
Chicago HACALOĞLU Jale Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. (2018): 1 - 74.
MLA HACALOĞLU Jale Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. , 2018, ss.1 - 74.
AMA HACALOĞLU J Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. . 2018; 1 - 74.
Vancouver HACALOĞLU J Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu. . 2018; 1 - 74.
IEEE HACALOĞLU J "Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu." , ss.1 - 74, 2018.
ISNAD HACALOĞLU, Jale. "Polikaprolakton Kompozitlerinin Hazırlanması ve Karakterizasyonu". (2018), 1-74.