Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi

4 0

Proje Grubu: KBAG Sayfa Sayısı: 77 Proje No: 214Z083 Proje Bitiş Tarihi: 01.11.2017 Metin Dili: Türkçe İndeks Tarihi: 27-01-2020

Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi

Öz:
Bu projenin amacı, kanser gibi temel hastalıkların terapisinde önemli bir moleküler hedef olan MMP-2 enzimine spesifik, klorotoksin peptit yapısına dayalı, yüksek etkinlikte ve seçicilikte özgün bir inhibitör geliştirmektir. Geliştirilmeye çalışılan inhibitör, 36 amino asitten oluşan (4 kDa) ve akrep zehrinden izole edilmiş seçici bir MMP-2 inhibitörü olan klorotoksin (CLTX) peptidinin yapısına dayanmaktadır. Proje stratejisi, ön çalışmalarımız sonucu CLTX yapısında belirlediğimiz dört kritik pozisyonda (H10, K15, K23 ve K27) farklı karbon zinciri eklemeleriyle toplam 20 adet tiyol ve azido alanin modifikasyonu gerçekleştirerek MMP-2 yapısındaki çinko elementine koordinasyon sağlama prensibine dayanmaktadır. Proje süresinde lizin modifikasyonlarda sentezlerdeki sıkıntılardan dolayı strateji değiştirmeye gidilmesi gerekmiştir. Bu nedenle her bir lizinden 3 farklı modifikasyon sentezlenmiş ancak bunlardan da ikişer tanesinin katlanması başarı ile gerçekleşmiştir. Histidin modifikasyonu model peptitte başarılı olunmasına rağmen esas peptitte click tepkimesinin başarısızlığı nedeniyle gerçekleşememiştir. Elde edilen CLTX türevlerinin MMP-2 aktiviteleri ölçülmüş ancak beklenen aksine inhibe etmek yerine aktive ettiği görülmüştür.
Anahtar Kelime: rasyonel ilaç tasarımı peptit inhibitör klorotoksin matriks metalloproteinaz kanser yapısal biyoloji

Konular: Kimya, Organik Kimya, Tıbbi Biyokimya ve Moleküler Biyoloji
Erişim Türü: Erişime Açık
  • Akcan, M., Stroud, M. R., Hanse, S. J., Clark, R. J., Daly, N. L., Craik, D. J. ve Olson, J. M. 2011. “Chemical Re-engineering of Chlorotoxin Improves Bioconjugation Properties for Tumor Imaging and Targeted Therapy”, Journal of Medicinal Chemistry, 54, 782–787.
  • Ala-aho, R. ve Kahari, V. 2005. "Collagenases in cancer", Biochimie, 87, 273–286.
  • Ali, S. A., Alam, M., Abbasi, A., Undheim, E. A., Fry, B. G., Kalbacher, H. ve Voelter, W. 2016. “Structure-activity relationship of chlorotoxin-like peptides” Toxins, 8, 36.
  • Babine, R. E. ve Bender, S. L. 1997. "Molecular recognition of protein–ligand complexes: applications to drug design" Chemical Reviews. 97, 1359–1472.
  • Bafetti, L.M., Young, T.N., Itoh, Y. ve Stack, M.S. 1998. "Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells", Journal of Biological Chemistry. 273, 143–149.
  • Barrett, A. J., Rawlings, N. D., Woessner J. F. 2004. Handbook of Proteolytic Enzymes (2. Baskı). London: Academic Press.
  • Bauvois B. 2012. "New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression", Biochimica et Biophysica Acta, 1825, 29–36.
  • Benjamin MM., Khalil RA. Chapter7, "Matrix Metalloproteinase Inhibitors as Investigative Tools in the Pathogenesis and Management of Vascular Disease. Matrix Metalloproteinase Inhibitors, Specificity of Binding and Structure-Activity Relationships", Springer : Gupta SP.
  • Bjorklund, M. ve Koivunen, E. 2005. "Gelatinase-mediated migration and invasion ofcancer cells", Biochim. Biophys. Acta, 1755, 37–69.
  • Bode, W. 1995. "A helping hand for collagenases: the haemopexin-like domain", Structure, 3, 527–530.
  • Bode, W. Fernandez-Catalan, C., Tschesche, H., Grams, F., Nagasa, H. ve Maskos, K. 1999. "Structural properties of matrix metalloproteinases", Cellular and Molecular Life Science, 55, 639–652.
  • Briknarova, K., Grishaev, A., Banyai, L., Tordai, H., Patthy, L. ve Llinas, M. 1999. "The second type II module from human matrix metalloproteinase 2: structure, function and dynamics", Structure 7, 1235–1245.
  • Cauwe, B., Van den Steen, P.E. ve Opdenakker, G. 2007. "The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases", Critical Review in Biochemistry and Molecular Biolology, 42, 113–185.
  • Conte, M. L., S., Chambery, A., Marra, A. ve Dondoni, A. 2010. “Photoinduced Addition of Glycosyl Thiols to Alkynyl Peptides: Use of Free-Radical Thiol−Yne Coupling for Post-Translational Double-Glycosylation of Peptides”, Journal of Organic Chemistry, 75, 4644–4647.
  • Craik, D. J., Daly, N. L. ve Waine, C. 2001. “The cystine knot motif in toxins and implications for drug design”, Toxicon, 39, 43-60.
  • Debin, J., Maggio, J. E. ve Strichartz, G. R. 1993. “Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion “, Cell Physiology, 33, 361-369.
  • Deshane, J., Garner, C. C. ve Sontheimer, H. 2003. “Chlorotoxin Inhibits Glioma Cell Invasion via Matrix Metalloproteinase-2”, The Journal of Biological Chemistry, 278, 4135-4144.
  • Du, J., Yuejun, F., Wang, J. ve Liang, A. 2013. “Adenovirus-mediated expression of BmK CT suppresses growth and invasion of rat C6 glioma cells”, Biotechnology Letters, 35, 861-870.
  • Egeblad, M., Werb, Z. 2002. "New functions for the matrix metalloproteinases in cancer progression" Nature Review in Cancer, 2, 161–174.
  • Fisher, G. J., Quan, T., Purohit, T., Shao, Y., Cho, M.K., He, T., Varani, J., Kang, S. ve Voorhee, J.J. 2009. "Collagen fragmentation promotes oxidative stress and elevates matrixmetalloproteinase-1 in fibroblasts in aged human skin", American Journal of Pathology, 74,101–114.
  • Folgueras, A. R., Pendás, A.M., Sánchez, L.M. ve López-Otín, C. 2004. "Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies", International Journal of Develepment Biology, 48, 411–424.
  • Fridman, R., Fuerst, T.R., Bird, R.E., Hoyhtya, M., Oelkuct, M., Kraus, S., Komarek, D., Liotta, L.A., Berman, M.L. ve Stetler-Stevenson, W.G. 1992. "Domain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions", Journal of Biological Chemistry, 267, 15398–15405.
  • Fua, Y., Yinai L. T. ve Lianga, A. 2007.” Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas”, Neuroscience Letters, 421, 62–67.
  • Gioia, M., Fasciglione, G.F., Marini, S., D’Alessio, S., De Sanctis, G., Diekmann, O., Pieper, M., Politi, V., Tschesche, H. ve Coletta, M. 2002. "Modulation of the catalytic activity of neutrophil collagenase MMP-8 on bovine collagen I. Role of the activation cleavage and of the hemopexin-like domain", Journal of Biological Chemistry, 277, 23123–23130.
  • Gioia, M., Monaco, S., Fasciglione, G.F., Coletti, A., Modesti, A., Marini, S. ve Coletta, M. 2007. "Characterization of the mechanisms by which gelatinase A, neutrophil collagenase, and membrane-type metalloproteinase MMP-14 recognize collagen I and enzymatically process the two alpha-chains", Journal of Molecular Biology, 368, 1101–1113.
  • Gioia, M., Monaco, S., Van Den Steen, P.E., Sbardella, D., Grasso, G., Marini, S., Overall, C.M., Opdenakker, G. ve Coletta, M. 2009. "The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B", Journal of Molecular Biology, 386, 419–434.
  • Goddard-Borger, E. D. ve Stick, R. V. 2007. “An efficient, inexpensive, and shelf- stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride” Organic Letters 9, 3797-3800.
  • Gupta A., Kaur CD., Jangdey, M. ve Saraf S. 2014. "Matrix metalloproteinase enzymes and their naturally derived inhibitors: Novel targets in photocarcinoma therapy", Ageing Research Reviews, 13, 65–74
  • Gutte, B. 1995. "Solid phase peptide synthesis, Peptides: Synthesis, Structures and Applications (2). Swetzerland: Academic Press, 93-169.
  • Hatfield, K.J., Reikvam, H. ve Bruserud, O. 2010. "The crosstalk between the matrix metalloprotease system and the chemokine network in acute myeloid leukemia", Current Medicinal Chemistry,17, 4448–4461.
  • Hermanson, G. T. 2008. Bioconjugate Techniques (2), San Diego: Academic Press
  • Hirose, T., Patterson, C., Pourmotabbed, T., Mainardi, C.L. ve Hasty, K.A. 1993. "Structure–function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity", Proceedings of the National Academy of Sci. USA, 90, 2569–2573.
  • Hirose, T., Riefe, R.A., Smith Jr., G.N., Stevens, R.M., Mainardi, C.L. ve Hasty, K.A. 1992. "Characterization of type V collagenase (gelatinase) in synovial fluid of patients with inflammatory arthritis", J. Rheumatol. 19, 593–599.
  • Hu J., Van den Steen PE., Sang QA. ve Opdenakker G. 2007. "Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases", Nature Reviews, Drug Discovery. 6, 480-498.
  • Kent, S. B. H. 2009." Total chemical synthesis of proteins", Chemical. Sociecty Reviews, 38, 338-351.
  • Kessenbrock, K., Plaks, V. ve Werb, Z. 2010. "Matrix metalloproteinases: regulators of the tumor microenvironment", Cell, 141, 52–67.
  • Kleifeld, O. 2000. "Structural characterization of the catalytic active site in the latent and active natural gelatinase B from human neutrophils", Journal of Biological Chemistry, 275, 34335–34343.
  • Klein, T., Bischoff, R. 2011. "Physiology and pathophysiology of matrix metalloproteases", Amino Acids, 41, 271–290.
  • Kobayashi, Y., Matsumoto, M., Kotani, M., Makino, T. 1999. "Possible involvement of matrix metalloproteinase-9 in Langerhans cell migration and maturation", J. Immunol, 163, 5989–5993.
  • Koivunen, E., Arap, W., Valtane, H., Rainisalo, A., Medina, O. P., Heikkilä, P., Kantor, C., Gahmberg, C. G., Salo, T., Konttinen, Y. T., Sorsa, T. M., Ruoslahti, E. ve Pasqualini, R. 1999. “Tumor targeting with a selective gelatinase inhibitor”, Nature Biotechnology, 17, 768 – 774.
  • Kollet, O. 2006. "Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells", Nature Med., 12, 657–664. Lau, Y. H. ve Spring, D. R. 2011. “Efficient synthesis of Fmoc-protected azido amino acids” Synlett, 1917-1919.
  • Lippens, G., Dhalluin, C. ve Wieruszeski, J. M. 1995. “Use of a water flip-back pulse in the homonuclear NOESY experiment“, Journal of Biomolecular NMR, 5, 327-331.
  • Lo Conte, M. 2010. "Photoinduced Addition of Glycosyl Thiols to Alkynyl Peptides: Use of Free-Radical Thiol− Yne Coupling for Post-Translational Double- Glycosylation of Peptides" , The Journal of Organic Chemistry, 75, 4644-4647
  • Lyons, S., O'Neal J. ve Sontheimer, H. 2002. “Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin”, Glia, 39, 162-173.
  • Maertens, C., Wei, L., Tytgat, J., Droogmans, G. ve Nilius, B. 2000. “Chlorotoxin does not inhibit volume-regulated, calcium-activated and cyclic AMP-activated chloride channels”, British Journal of Pharmacology, 129, 791-801.
  • Marchenko, G. N., Ratnikov, B. I., Rozanov, D. V., Godzik, A., Deryugina, E. I. ve Strongin, A. Y. 2001. "Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin", Biochemical Journal, 356, 705–718.
  • Maskos, K. 2005. "Crystal structures of MMPs in complex with physiological and pharmacological inhibitors", Biochimie 87, 249–263.
  • Matrisian, L. M., Bowden, G. T., Krieg, P., Furstenberger, G., Briand, J.-P., Leroy, P., Breathnach, R., 1986. "The mRNA coding for the secreted protease transin is expressed more abundantly in malignant than in benign tumors", Proc. Natl. Acad. Sci. USA, 83, 9413–9417.
  • McQuibban, G. A. 2002. "Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti- inflammatory properties in vivo", Blood, 100, 1160–1167.
  • McQuibban, G. A., Gong, J. H., Tam, E. M., McCulloch, C. A., Clark-Lewis, I. ve Overall, C.M. 2000. "Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3", Science, 289, 1202–1206.
  • Merrifield, R. B. 1963. “Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide”, Journal of the American Chemical Society, 1963, 85, 2149-2154.
  • Monaco, S., Sparano, V., Gioia, M., Sbardella, D., Di Pierro, D., Marini, S., Coletta, M., 2006. "Enzymatic processing of collagen IV by MMP-2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains", Protein Science, 15, 2805–2815.
  • Mrugala, M. M., Adair, J. E. ve Kiem, H.P. 2012. “Outside the box--novel therapeutic strategies for glioblastoma”, Cancer Journal, 18, 51-58.
  • Murphy, G., Allan, J.A., Willenbrock, F., Cockett, M.I., O’Connell, J.P. ve Docherty, A.J.P. 1992. "The role of the C-terminal domain in collagenase and stromelysin specificity", Journal of Biological Chemistry, 267, 9612–9618.
  • Murphy, G., Nguyen, Q., Cockett, M.I., Atkinson, S.J., Allan, J.A., Knight, C.G., Willenbrock, F., Docherty, A.J., 1994. "Assessment of the role of the fibronectin- like domain of gelatinase A by analysis of a deletion mutant" Journal of Biological Chemistry, 269, 6632–6636.
  • Nagase, H. ve Woessner Jr. J.F., 1999. "Matrix metalloproteinases", Journal of Biological Chemistry, 274, 21491–21494.
  • Ndinguri, M. W., Bhowmick, M. ve Tokmina-Roszyk, D. 2012."Peptide-Based Selective Inhibitors of Matrix Metalloproteinase-Mediated Activities", Molecules, 17, 14230-14248.
  • Nelson AR, Fingleton B, Rothenberg ML ve Matrisian LM. 2000. "Matrix metalloproteinases: -- clinical implications", Journal of Clinical Oncology, 18, 1135- 49.
  • Opdenakker, G., van den Steen, P.E., Dubois, B., Nelissen, I., Van Coillie, E., Masure, S., Proost, P., van Damme, J. 2001. "Gelatinase B functions as regulator and effector in leukocyte biology", Journal of Leukocyte Biology, 69, 851–859.
  • Özen, C., Malek, J.M., Serpersu, E.H. (2006). "Dissection of aminoglycoside- enzyme interactions: a calorimetric and NMR study of neomycin B binding to the aminoglycoside phosphotransferase(3')-IIIa.", Journal of the American Chemical Society, 128(47), 15248-54
  • Özen, C., Serpersu, E.H. (2004). "Thermodynamics of aminoglycoside binding to aminoglycoside-3'-phosphotransferase IIIa studied by isothermal titration calorimetry", Biochemistry, 43(46), 14667-75.
  • Parks, W. C., Wilson, C. L., Lopez-Boado, Y. S. 2004. "Matrix metalloproteinases as modulators of inflammation and innate immunity", Nature Reviews Immunology 4, 617–629.
  • Patterson, M.L., Atkinson, S.J., Knäuper ve V., Murphy, G. 2001. "Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain", FEBS Letters, 503, 158–162.
  • Pícha, J., Buděšínský, M., Macháčková, K., Collinsová, M. ve Jiráček, J. 2017. “Optimized syntheses of Fmoc azido amino acids for the preparation of azidopeptides” Journal of Peptide Science 23, 202-214.
  • Pruijt, J. F. M. 1999. "Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9)", Proceedings of the National Academy of Sciences USA, 96, 10863–10868.
  • Quan, T., Qin, Z., Xia, W., Shao, Y., Voorhees, J.J. ve Fisher, G.J. 2009. "Matrix- degradingmetalloproteinases in photoaging", Journal of Investigative Dermatology Symposium Proceedings, 14 (1),20–24.
  • Rao GB. 2005. "Recent Developments in the Design of Specific Matrix Metalloproteinase Inhibitors aided by Structural and Computational Studies." Current Pharmaceutical Design, 2005, 11, 295-322.
  • Rjeibia I., Mabroukb K., Mosratia H., Berenguerc C., Mejdoubd H., Villarde C., Laffittee D., Bertinb D., Ouafikc L., Luisc J., ElAyeba M. ve Srairi-Abid N. 2011."Purification, synthesis and characterization of AaCtx, the first chlorotoxin- like peptide from Androctonus australis scorpion venom", Peptides, 32, 656–663.
  • Rodriguez, D., Morrison, C.J. ve Overall, C.M. 2010. "Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics", Biochimica et Biophysica Acta, 1803, 39–54.
  • Rouzaire-Dubois, B., Milandri, J. B., Bostel, S. ve Dubois, J. M. 2000. “Control of cell proliferation by cell volume alterations in rat C6 glioma cells”, Pflügers Archiv, 440 (6), 881-888.
  • Roy R., Yang, J. ve Moses, M.A. 2009. "Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer", Jounal of Clinical Oncology, 27, 5287–5297.
  • Sabeh, F., Li, X.Y., Saunders, T.L., Rowe, R.G. ve Weiss, S.J. 2009. "Secreted versus membrane-anchored collagenases: relative roles in fibroblast-dependent collagenolysis and invasion", Journal of Biological Chemistry, 28, 23001–23011.
  • Sbardella D., Fasciglione GV., Gioia M., Ciaccio C., Tundo GR., Marini S. ve Coletta M. 2012. "Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes", Molecular Aspects of Medicine 33, 119–208.
  • Schönbeck, U., Mach, F. ve Libby, P. 1998. "Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL- 1 beta processing", J. Immunol., 161, 3340–3346.
  • Skiles, J.W., Gonnella, N.C. ve Jeng, A.Y. 2001. "The design, structure, and therapeutic application of matrix metalloproteinase inhibitors", Curr. Med. Chem., 8, 425–474.
  • Soroceanu, L., Manning, T. J. Jr. ve Sontheimer, H. 1999. “Modulation of glioma cell migration and invasion using Cl(-) and K(+) ion channel blockers”, Journal of Neuroscience, 19 (14), 5942-5954.
  • Steffensen, B., Wallon, U.M. ve Overall, C.M. 1995. "Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen", J. Biol. Chem., 270, 11555–11566.
  • Swarnakar, S., Mishra A. ve Susri Ray Chaudhuri SR. 2012. "The Gelatinases and Their Inhibitors: The Structure–Activity Relationships". Matrix Metalloproteinase Inhibitors, Specificity of Binding and Structure-Activity Relationships. Editör: Gupta, S.P. New York: Springer.
  • Trexler, M., Briknarov, K., Gehrmann, M., Llinas, M. ve Patthy, L. 2003. "Peptide ligands for the fibronectin type II modules of matrix metalloproteinase 2 (MMP- 2)", J. Biol. Chem., 278, 12241–12246.
  • Tu, G., Xu, W., Huang, H. ve Li, S. 2008. "Progress in the development of matrix metal-loproteinase inhibitors", Curr. Med. Chem., 15 (14), 1388–1395.
  • Vala, C., Chrétie, F., Balentova, E., Lamandé-Langle, S. ve Chapleur, Y. 2011. “Neoglycopeptides through direct functionalization of cysteine”, Tetrahedron Letters, 52(1),17-20.
  • Van den Steen, P. E. 2003. "Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA- 78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities", Eur. J. Biochem., 270, 3739–3749.
  • Van den Steen, P. E., Proost, P., Wuyts, A., Van Damme, J. ve Opdenakker, G. 2000. "Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact", Blood, 96, 2673–2681.
  • Van den Steen, P.E., Dubois, B., Nelissen, I., Rudd, P.M., Dwek, R.A. ve Opdenakker, G. 2002. "Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9)", Crit. Rev. Biochem., Mol. Biol., 37, 375–536.
  • Van den Steen, P.E., Proost, P., Wuyts, A., van Damme, J. ve Opdenakker, G. 2000. "Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact", Blood, 96, 2673–2681.
  • Van Wart, H. E. ve Birkedal-Hansen, H. 1990. "The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family", Proc. Natl Acad. Sci. USA, 87, 5578–5582.
  • Van, L.P. ve Libert, C., 2006. "Matrix metalloproteinase-8: cleavage can be decisive. “Cytokine Growth Factor Review, 17 (4), 217–223.
  • Vargova, V., Pytliak, M. ve Mechirov, V. 2012. "Matrix Metalloproteinases". Matrix Metalloproteinase Inhibitors, Specificity of Binding and Structure-Activity Relationships. Editör: Gupta, S.P. New York: Springer.
  • Verma, R.P. 2012. "Hydroxamic Acids as Matrix Metalloproteinase Inhibitors". Matrix Metalloproteinase Inhibitors, Specificity of Binding and Structure-Activity Relationships. Editör: Gupta, S.P. New York: Springer.
  • Vihinen, P., Ala-aho, R. ve Kähäri, V.M. 2005. "Matrix metalloproteinases as therapeutictargets in cancer", Curr. Cancer Drug Targets, 5, 203–220.
  • Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., Shapiro, S.D., Senior, R.M. ve Werb, Z. 1998. "MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes", Cell, 93, 411–422.
  • Wilson, C.L. ve Matrisian, L.M. 1996. "Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions", Int. J. Biochem., Cell Biol., 28, 123–136.
  • Xu, X., Chen, Z., Wang, Y., Bonewald, L. ve Steffensen, B. 2007. "Inhibition of MMP-2 gelatinolysis by targeting exodomain–substrate interactions", Biochem. J., 406, 147–155.
  • Zask A, Levin J.I, Killar L.M. ve Skonicki JS. 1996. "Inhibition of matrix metalloproteinases: structure based design", Curr Pharm Design, 2, 624-66.
APA ÖZÇUBUKÇU S, ÖZEN C (2017). Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. , 1 - 77.
Chicago ÖZÇUBUKÇU Salih,ÖZEN Can Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. (2017): 1 - 77.
MLA ÖZÇUBUKÇU Salih,ÖZEN Can Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. , 2017, ss.1 - 77.
AMA ÖZÇUBUKÇU S,ÖZEN C Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. . 2017; 1 - 77.
Vancouver ÖZÇUBUKÇU S,ÖZEN C Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. . 2017; 1 - 77.
IEEE ÖZÇUBUKÇU S,ÖZEN C "Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi." , ss.1 - 77, 2017.
ISNAD ÖZÇUBUKÇU, Salih - ÖZEN, Can. "Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi". (2017), 1-77.
APA ÖZÇUBUKÇU S, ÖZEN C (2017). Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. , 1 - 77.
Chicago ÖZÇUBUKÇU Salih,ÖZEN Can Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. (2017): 1 - 77.
MLA ÖZÇUBUKÇU Salih,ÖZEN Can Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. , 2017, ss.1 - 77.
AMA ÖZÇUBUKÇU S,ÖZEN C Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. . 2017; 1 - 77.
Vancouver ÖZÇUBUKÇU S,ÖZEN C Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi. . 2017; 1 - 77.
IEEE ÖZÇUBUKÇU S,ÖZEN C "Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi." , ss.1 - 77, 2017.
ISNAD ÖZÇUBUKÇU, Salih - ÖZEN, Can. "Klorotoksin Peptit Yapısına Dayalı Matriks Metalloproteinaz-2 İnhibitörlerinin Geliştirilmesi". (2017), 1-77.