5 4

Proje Grubu: MAG Sayfa Sayısı: 130 Proje No: 117M953 Proje Bitiş Tarihi: 01.04.2019 Metin Dili: Türkçe İndeks Tarihi: 02-03-2020

Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi

Öz:
Çok çesitli uygulama alanına sahip olan nanoakıskanlar, ısı transferi sistemlerinde, kullanılan akıskanların ısıl iletkenlik katsayısını arttırmak amacıyla baz akıskanın içerisine, ısıl iletkenligi yüksek nano boyutlarda parçacıklar katılmasıyla üretilirler. Nanoakıskanların hazırlanması, hazırlanan nanoakıskanın ısıl iletkenliginin arttırılması her ne kadar basit görünse de çok karmasık bir sistemdir. Nanoakıskanların ısıl iletkenliginin artması ve ısı transferi uygulamalarında kullanılabilirligi, hazırlanan nanoakıskanın kararlılıgından, viskozitesine kadar birçok önemli parametre ile baglantılıdır. Isıl iletim katsayısı ne kadar artmıs olursa olsun, kararlı olmayan nanoakıskanların kısa sürede çökmesi ve viskozitesinin baz akıskana göre fazlaca artıs göstermesi, ısı transferi sistemlerinde basınç düsüsüne, korozyona ve tıkanıklıklara neden olmaktadır. Tüm bunlar göz önüne alındıgında, hazırlanan nanoakıskanların pratikte kullanımı için bu parametrelerin incelenmesi ve birbiri ile olan baglantılarının ortaya konulması gerekmektedir. Bu projede kararlı nanoakıskanların hazırlanması ve ısıl iletkenliklerinin belirlenmesinin yanı sıra bu parametrelerin birbiri ile baglantısının aydınlatılması hedeflenmistir. Baz akıskan olarak su, etilen glikol (EG) ve kompresör yagı kullanılan bu projede, nanoparçacık olarak farklı yüzey alanlarına sahip grafen nanoplateletler (GNP) ve tek duvarlı karbon nanotüpler (SWCNT) kullanılmıstır. Nanoakıskan kararlılıgının saglanması amacıyla, polietilen glikol türevi polihedral oligomerik silseskuokzan (PEG-POSS) nanoakıskanlarda ilk kez yüzey aktif madde olarak bu projede kullanılmıstır. Ayrıca hazırlanan akıskanların kararlılıgının artması için pH ayarlaması yapılmıstır. SWCNT içeren su bazlı nanoakıskanların hazırlanmasında 50 dk ve 100 dk olmak üzere iki farklı ultrasonikasyon süresi kullanılarak ısıl iletkenlige etkisi incelenmistir. Kararlılık degerlendirmesi için UV-Vis Spektrofotometrisi ve Zeta Potansiyeli ölçümleri yapılmıstır. Bu projede örneklerin santrifüj edilmesi gibi farklı islemler sayesinde nanoparçacık konsantrasyonunun zeta potansiyeline etkisi basarıyla incelenmistir. Isıl iletkenlik ölçümleri 3-omega yöntemiyle gerçeklestirilmistir. Ayrıca farklı yüzey alanlarına sahip nanoparçacıkların kullanılması, farklı konsantrasyonlarda yüzey aktif madde kullanımı ve farklı baz akıskanlarla çalısılması; bu örneklerin reolojik davranısı, ısıl iletkenlik ve yüzey gerilimi ile temas açısı gibi ısı transferi sistemlerinde önem tasıyan özelliklerinin belirlenmesi ve bu özellikleri etkileyen parametrelerin incelenmesi, bu projeyi çok yönlü ve basarılı bir çalısma haline getirmistir.
Anahtar Kelime: 3-omega ısıl iletkenlik nanoakıskan SWCNT GNP viskozite

Konular: Mühendislik, Petrol
Erişim Türü: Erişime Açık
  • Abbas, Z., Labbez, C., Nordholm, S., Ahlberg, E. (2008). "Size-Dependent Surface Charging of Nanoparticles", The Journal of Physical Chemistry C, 112 (15), 5715-5723.
  • 1- Preparation of stable nanofluids with surface functionalized nanoparticles and determination of the change in thermal conductivity of nanofluids (Bildiri - Uluslararası Bildiri - Sözlü Sunum), 2- Evaluating the Stability and Heat Transfer Performance of Carbon Based Aqueous Nanofluids (Bildiri - Uluslararası Bildiri - Sözlü Sunum), 3- Preparation and Characterization of Carbon Nanofluids (Bildiri - Ulusal Bildiri - Poster Sunum),
  • Ahammed, N., Asirvatham, L. G., Wongwises, S. (2016). "Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications", Journal of Thermal Analysis and Calorimetry, 123 (2), 1399- 1409.
  • Ajayan, P. M. (2004). Bulk metal and ceramics nanocomposites. In P. M. Ajayan, L. S. Schadler, P. V. Braun (Eds.), Nanocomposite Science and Technology: Wiley-VCH Verlag GmbH & Co.
  • Alasli, A., Evgin, T., Turgut, A. (2018). "Re-dispersion ability of multi wall carbon nanotubes within low viscous mineral oil", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 219-228.
  • Albaiti, Liliasari, Sumarna, O., Martoprawiro, M. A. (2017). "A Study of Oil Viscosity Mental Model", Journal of Physics: Conference Series, 812, 012030.
  • Amrollahi, A., Hamidi, A. A., Rashidi, A. M. (2008). "The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)", Nanotechnology, 19 (31), 315701.
  • Antoniadis, K. D., Tertsinidou, G. J., Assael, M. J., Wakeham, W. A. J. I. J. o. T. (2016). "Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied", 37 (8), 78.
  • Aravind, S. S. J., Baskar, P., Baby, T. T., Sabareesh, R. K., Das, S., Ramaprabhu, S. (2011). "Investigation of Structural Stability, Dispersion, Viscosity, and Conductive Heat Transfer Properties of Functionalized Carbon Nanotube Based Nanofluids", The Journal of Physical Chemistry C, 115 (34), 16737-16744.
  • Arshad, A., Jabbal, M., Yan, Y., Reay, D. (2019). "A Review on Graphene based Nanofluids: Preparation, Characterization and Applications", Journal of Molecular Liquids, 279.
  • Assael, M. J., Chen, C.-F., Metaxa, I., Wakeham, W. A. (2004). "Thermal Conductivity of Suspensions of Carbon Nanotubes in Water", International Journal of Thermophysics, 25 (4), 971-985.
  • Assael, M. J., Metaxa, I. N., Arvanitidis, J., Christofilos, D., Lioutas, C. (2005). "Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants", International Journal of Thermophysics, 26 (3), 647-664.
  • Assael, M. J., Metaxa, I. N., Kakosimos, K., Constantinou, D. (2006). "Thermal Conductivity of Nanofluids – Experimental and Theoretical", International Journal of Thermophysics, 27 (4), 999-1017.
  • Ayandele, E., Sarkar, B., Alexandridis, P. (2012). "Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites", Nanomaterials, 2 (4), 445-475.
  • Barnes, H. A. (1999). "The yield stress—a review or ‘παντα ρει’—everything flows?", Journal of Non-Newtonian Fluid Mechanics, 81 (1), 133-178.
  • Bashirnezhad, K., Bazri, S., Safaei, M. R., Goodarzi, M., Dahari, M., Mahian, O., . . . Wongwises, S. (2016). "Viscosity of nanofluids: A review of recent experimental studies", International Communications in Heat and Mass Transfer, 73, 114-123.
  • Berry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y. C., Tabor, R. F. (2015). "Measurement of surface and interfacial tension using pendant drop tensiometry", Journal of Colloid and Interface Science, 454, 226-237.
  • Bhuiyan, M. H. U., Saidur, R., Amalina, M. A., Mostafizur, R. M., Islam, A. (2015). "Effect of Nanoparticles Concentration and Their Sizes on Surface Tension of Nanofluids", Procedia Engineering, 105, 431-437.
  • Binnig, G., Quate, C. F., Gerber, C. (1986). "Atomic force microscope", Phys Rev Lett, 56 (9), 930-933.
  • Bonn, D., Denn, M. M. (2009). "Yield Stress Fluids Slowly Yield to Analysis", Science, 324 (5933), 1401.
  • Brown, M. A., Duyckaerts, N., Redondo, A. B., Jordan, I., Nolting, F., Kleibert, A., . . . Abbas, Z. (2013). "Effect of Surface Charge Density on the Affinity of Oxide Nanoparticles for the Vapor–Water Interface", Langmuir, 29 (16), 5023-5029.
  • Cahill, D. (1990). "Thermal conductivity measurement from 30 to 750 K: the 3omega method", Rev. Sci. Instrum., 61, 802-808.
  • Chen, L., Xie, H. (2009). "Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352 (1), 136-140.
  • Chen, L., Xie, H., Li, Y., Yu, W. (2008). "Nanofluids containing carbon nanotubes treated by mechanochemical reaction", Thermochimica Acta, 477 (1), 21-24.
  • Chen, R.-H., Phuoc, T. X., Martello, D. (2011). "Surface tension of evaporating nanofluid droplets", International Journal of Heat and Mass Transfer, 54 (11), 2459-2466.
  • Chirtoc, M., Filip, X., Henry, J. F., Antoniow, J. S., Chirtoc, I., Dietzel, D., . . . Pelzl, J. (2004). "Thermal probe self-calibration in ac scanning thermal microscopy", Superlattices and Microstructures, 35 (3), 305-314.
  • Chirtoc, M., Henry, J. F. (2008). "3 omega hot wire method for micro-heat transfer measurements: From anemometry to scanning thermal microscopy (SThM)", The European Physical Journal Special Topics, 153 (1), 343-348.
  • Devre, R. D., Budhlall, B. M., Barry, C. F. (2016). "Enhancing the Colloidal Stability and Electrical Conductivity of Single-Walled Carbon Nanotubes Dispersed in Water", 217 (5), 683-700.
  • Ding, Y., Alias, H., Wen, D., Williams, R. A. (2006). "Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)", International Journal of Heat and Mass Transfer, 49 (1), 240-250.
  • Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J. (2001). "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles", Applied Physics Letters, 79 (6), 718-720.
  • Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., . . . Joo, S. (2014). "Carbon nanotubes: properties, synthesis, purification, and medical applications", Nanoscale Res Lett, 9 (1), 393.
  • Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., Thio, T. (1996). "Electrical conductivity of individual carbon nanotubes", Nature, 382 (6586), 54-56.
  • Elçioğlu, E. B., Güvenç Yazıcıoğlu, A., Kakaç, S. (2014). "Nanoakışkan Viskozitesinin Karşılaştırmalı Değerlendirmesi", Isı Bilimi ve Tekniği Dergisi, 34 (1), 137-151.
  • Estellé, P., Cabaleiro, D., Żyła, G., Lugo, L., Murshed, S. M. S. (2018). "Current trends in surface tension and wetting behavior of nanofluids", Renewable and Sustainable Energy Reviews, 94, 931-944.
  • Ferrari, Ravera. (2010). "Surfactants and wetting at superhydrophobic surfaces: Water solutions and non aqueous liquids", Advances in colloid and interface science, 161, 22- 28.
  • Fuskele, V., Sarviya, R. M. (2017). "Recent developments in Nanoparticles Synthesis, Preparation and Stability of Nanofluids", Materials Today: Proceedings, 4 (2, Part A), 4049-4060.
  • Ganesh, E. N. (2013). "Single Walled and Multi Walled Carbon Nanotube Structure. Synthesis and Applications", International Journal of Innovative Technology and Exploring Engineering, 2 (4), 2278-3075.
  • Georgakilas, V., Kordatos, K., Prato, M., Guldi, D. M., Holzinger, M., Hirsch, A. (2002). "Organic Functionalization of Carbon Nanotubes", Journal of the American Chemical Society, 124 (5), 760-761.
  • Glory, J., Bonetti, M., Helezen, M., Mayne-L’Hermite, M., Reynaud, C. (2008). "Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes", Journal of Applied Physics, 103 (9), 094309.
  • Göktepe, F. (2015). "Eğrilebilir Karbon Nanotüpler ve Bu Özel Liflerden Üretilen Teknik İplikler", Tekstil ve Mühendis, 22 (100), 1-12.
  • Hackley, V. A., Ferraris, C. F. (2001). Guide to Rheological Nomenclature: National Institute of Standards and Technology.
  • Hadadian, M., Goharshadi, E. K., Youssefi, A. (2014). "Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids", Journal of Nanoparticle Research, 16 (12), 2788.
  • Harish, S., Ishikawa, K., Einarsson, E., Aikawa, S., Chiashi, S., Shiomi, J., Maruyama, S. (2012). "Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions", International Journal of Heat and Mass Transfer, 55 (13), 3885- 3890.
  • Helland, A., Wick, P., Koehler, A., Schmid, K., Som, C. (2007). "Reviewing the environmental and human health knowledge base of carbon nanotubes", Environmental health perspectives, 115 (8), 1125-1131.
  • Hemmat Esfe, M., Afrand, M., Karimipour, A., Yan, W.-M., Sina, N. (2015). "An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol", International Communications in Heat and Mass Transfer, 67, 173-175.
  • Hussein, A., Sarkar, S., Kim, B. (2016). "Low Temperature Reduction of Graphene Oxide Using Hot-plate for Nanocomposites Applications", Journal of Materials Science & Technology, 32 (5), 411-418.
  • Hwang, Park, H. S., Lee, J. K., Jung, W. H. (2006). "Thermal conductivity and lubrication characteristics of nanofluids", Current Applied Physics, 6, e67-e71.
  • Hwang, Y. J., Ahn, Y. C., Shin, H. S., Lee, C. G., Kim, G. T., Park, H. S., Lee, J. K. (2006). "Investigation on characteristics of thermal conductivity enhancement of nanofluids", Current Applied Physics, 6 (6), 1068-1071.
  • Iijima, S., Ichihashi, T. (1993). "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363 (6430), 603-605.
  • Jayakumar, S. (2016). Components, Principle and Applications of UV Vis-Spectophotometer. Retrieved from https://www.researchgate.net/publication/305402942_Components_Principle_and_Ap plications_of_UV_Vis-Spectophotometer
  • Jeong, y., Joon Chang, W., Chang, S. (2008). "Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids", International Journal of Heat and Mass Transfer, 51, 3025-3031.
  • Jha, N., Ramaprabhu, S. (2009). "Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids", Journal of Applied Physics, 106 (8), 084317.
  • John, G. (1997). Richard Feynman: A life in science. NY: Dutton.
  • Kamatchi, R., Venkatachalapathy, S., Srinivas, B. (2015). "Synthesis, stability, transport properties, and surface wettability of reduced graphene oxide/water nanofluids", International Journal of Thermal Sciences, 97, 17-25.
  • Kasuya, A., Saito, Y., Sasaki, Y., Fukushima, M., Maedaa, T., Horie, C., Nishina, Y. (1996). "Size dependent characteristics of single wall carbon nanotubes", Materials Science and Engineering: A, 217-218, 46-47.
  • Kaszuba, M., Corbett, J., Watson, F. M., Jones, A. (2010). "High-concentration zeta potential measurements using light-scattering techniques", Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 368 (1927), 4439-4451.
  • Kim, P., Shi, L., Majumdar, A., McEuen, P. L. (2001). "Thermal transport measurements of individual multiwalled nanotubes", Phys Rev Lett, 87 (21), 215502.
  • Kim, S. J., Bang, I. C., Buongiorno, J., Hu, L. W. (2007). "Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux", International Journal of Heat and Mass Transfer, 50 (19), 4105-4116.
  • Kim, Y. J., Ma, H., Yu, Q. (2010). "Plasma nanocoated carbon nanotubes for heat transfer nanofluids", Nanotechnology, 21 (29), 295703.
  • Kumar, R., Milanova, D. (2009). "Effect of surface tension on nanotube nanofluids", Applied Physics Letters, 94, 073107-073107.
  • Kuo, S.-W., Chang, F.-C. (2011). "POSS related polymer nanocomposites", Progress in Polymer Science, 36 (12), 1649-1696.
  • Lee, C., Wei, X., Kysar, J. W., Hone, J. (2008). "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science, 321 (5887), 385.
  • Lee., Rhee. (2014). "Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation", Journal of Materials Science, 49 (4), 1506-1511.
  • Li, G., Wang, L., Ni, H., Pittman, C. (2001). "Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A Review", Journal of Inorganic and Organometallic Polymers, 11 (3), 123-154.
  • Liu, M.-S., Ching-Cheng Lin, M., Huang, I. T., Wang, C.-C. (2005). "Enhancement of thermal conductivity with carbon nanotube for nanofluids", International Communications in Heat and Mass Transfer, 32 (9), 1202-1210.
  • Liu, M., Lin, M. C., Wang, C. (2011). "Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system", Nanoscale Res Lett, 6 (1), 297.
  • Ma, W., Yang, F., Shi, J., Wang, F., Zhang, Z., Wang, S. (2013). "Silicone based nanofluids containing functionalized graphene nanosheets", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431, 120-126.
  • Maeda, T., Horie, C. (1999). "Phonon modes in single-wall nanotubes with a small diameter", Physica B: Condensed Matter, 263-264, 479-481.
  • Mehrali, M., Sadeghinezhad, E., Latibari, S. T., Kazi, S. N., Mehrali, M., Zubir, M. N. B. M.,
  • Metselaar, H. S. C. J. N. R. L. (2014). "Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets", 9 (1), 15.
  • Mingzheng, Z., Guodong, X., Jian, L., Lei, C., Lijun, Z. (2012). "Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions", Experimental Thermal and Fluid Science, 36, 22-29.
  • Moffat, J. R., Sefiane, K., Shanahan, M. E. R. (2009). "Effect of TiO2 Nanoparticles on Contact Line Stick−Slip Behavior of Volatile Drops", The Journal of Physical Chemistry B, 113 (26), 8860-8866.
  • Morita, A., Carastan, D., Demarquette, N. (2002). "Influence of drop volume on surface tension evaluated using the pendant drop method", Colloid and Polymer Science, 280, 857- 864.
  • Mukherjee, M. (2011). "Effect of temperature in synthesis of silver nanoparticles in triblock copolymer micellar solution", Journal of Experimental Nanoscience, 6, 596-611.
  • Mukherjee, S., Mishra, P. C., Chaudhuri, P. (2018). "Stability of Heat Transfer Nanofluids – A Review", ChemBioEng Reviews, 5 (5), 312-333.
  • Murshed, Estellé, P. (2017). "A state of the art review on viscosity of nanofluids", Renewable and Sustainable Energy Reviews, 76, 1134-1152.
  • Murshed, Tan, S.-H., Nguyen, N.-T. (2008). "Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics", Journal of Physics D: Applied Physics, 41 (8), 085502.
  • Murshed, S. M. S., Nieto de Castro, C. A. (2014). "Superior thermal features of carbon nanotubes-based nanofluids – A review", Renewable and Sustainable Energy Reviews, 37, 155-167.
  • Nabeel Rashin, M., Hemalatha, J. (2013). "Synthesis and viscosity studies of novel ecofriendly ZnO–coconut oil nanofluid", Experimental Thermal and Fluid Science, 51, 312-318.
  • Nanda, J., Maranville, C., Bollin, S. C., Sawall, D., Ohtani, H., Remillard, J. T., Ginder, J. M. (2008). "Thermal Conductivity of Single-Wall Carbon Nanotube Dispersions: Role of Interfacial Effects", The Journal of Physical Chemistry C, 112 (3), 654-658.
  • Nasiri, A., Shariaty-Niasar, M., Rashidi, A. M., Khodafarin, R. (2012). "Effect of CNT structures on thermal conductivity and stability of nanofluid", International Journal of Heat and Mass Transfer, 55 (5), 1529-1535.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., . . . Firsov, A. A. (2005). "Two-dimensional gas of massless Dirac fermions in graphene", Nature, 438 (7065), 197-200.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). "Electric field effect in atomically thin carbon films", Science, 306 (5696), 666-669.
  • Okubo, T. (1995). "Surface Tension of Structured Colloidal Suspensions of Polystyrene and Silica Spheres at the Air-Water Interface", Journal of Colloid and Interface Science, 171 (1), 55-62.
  • Ouyang, M., Huang, J.-L., Cheung, C. L., Lieber, C. M. (2001). "Atomically Resolved Single- Walled Carbon Nanotube Intramolecular Junctions", Science, 291 (5501), 97-100.
  • Pantzali, M. N., Kanaris, A., Antoniadis, K., Mouza, A., Paras, S. (2009). "Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface", International Journal of Heat and Fluid Flow, 30, 691-699.
  • Papageorgiou, D. G., Kinloch, I. A., Young, R. J. (2017). "Mechanical properties of graphene and graphene-based nanocomposites", Progress in Materials Science, 90, 75-127.
  • Pavese, M., Musso, S., Bianco, S., Giorcelli, M., Pugno, N. (2008). "An analysis of carbon nanotube structure wettability before and after oxidation treatment", Journal of Physics: Condensed Matter, 20, 474206.
  • Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., Rousset, A. (2001). "Specific surface area of carbon nanotubes and bundles of carbon nanotubes", Carbon, 39 (4), 507-514.
  • Pope, M., Korkut Punckt, S., Punckt, C., Aksay, I. (2013). "Supercapacitor Electrodes Produced through Evaporative Consolidation of Graphene Oxide-Water-Ionic Liquid Gels", Journal of The Electrochemical Society, 160, A1-A8.
  • Popov, V. N. (2004). "Theoretical evidence for T1/2 specific heat behavior in carbon nanotube systems", Carbon, 42 (5), 991-995.
  • Radiom, M., Yang, C., Chan, W. (2009). "Characterization of Surface Tension and Contact Angle of Nanofluids", Proceedings of SPIE - The International Society for Optical Engineering, 7522.
  • Ranjbar, H., Khosravi-Nikou, M. R., Safiri, A., Bovard, S., Khazaei, A. (2015). "Experimental and theoretical investigation on Nano-fluid surface tension", Journal of Natural Gas Science and Engineering, 27.
  • Rao, Y. (2010). "Nanofluids: Stability, phase diagram, rheology and applications", Particuology, 8 (6), 549-555.
  • Rasheed, A. K., Khalid, M., W, R., Gupta, T., Chan, A. (2016). "Graphene based nanofluids and nanolubricants – Review of recent developments", Renewable and Sustainable Energy Reviews, 63, 346-362.
  • S. Carslaw, H., C. Jaeger, J. (1959). Conduction of Heat in Solids. London: Oxford Univ. Press.
  • Sadeghinezhad, E., Mehrali, M., Saidur, R., Mehrali, M., Tahan Latibari, S., Akhiani, A. R., Metselaar, H. S. C. (2016). "A comprehensive review on graphene nanofluids: Recent research, development and applications", Energy Conversion and Management, 111, 466-487.
  • Saeed, K., Khan, I. (2013). Carbon nanotubes–properties and applications: a review (Vol. 14).
  • Saether, E., Frankland, S. J. V., Pipes, B. (2003). Transverse Mechanical Properties of Single- Walled Carbon Nanotube Crystals. Part I: Determination of Elastic Moduli (Vol. 63).
  • Sarsam, W. S., Amiri, A., Zubir, M. N. M., Yarmand, H., Kazi, S. N., Badarudin, A. (2016). "Stability and thermophysical properties of water-based nanofluids containing triethanolamine-treated graphene nanoplatelets with different specific surface areas", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 500, 17-31.
  • Scott, D. W. (1946). "Thermal Rearrangement of Branched-Chain Methylpolysiloxanes", Journal of the American Chemical Society, 68 (3), 356-358.
  • Shah, Islam, M. M., Shahrul, I. M., Rahman, S. (2013). "Effect of particle concentration, temperature and surfactant on surface tension of nanofluids", International Communications in Heat and Mass Transfer, 49.
  • Shah, R. R., Pawar, R. B., Gayakar, P. P. (2015). "UV-Visible Spectroscopy-A Review", International Journal of Institutional Pharmacy and Life Sciences, 5, 490-505.
  • Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S., Seal, S. (2011). "Graphene Based Materials: Past, Present and Future", Progress in Materials Science, 56 (8), 1178– 1271.
  • Slonczewski, J. C., Weiss, P. R. (1958). "Band Structure of Graphite", Physical Review, 109 (2), 272-279.
  • Taherian, H., Alvarado, J. L., Languri, E. M. (2018). "Enhanced thermophysical properties of multiwalled carbon nanotubes based nanofluids. Part 2: Experimental verification", Renewable and Sustainable Energy Reviews, 82, 4337-4344.
  • Tanvir, S., Qiao, L. J. N. R. L. (2012). "Surface tension of Nanofluid-type fuels containing suspended nanomaterials", 7 (1), 226.
  • Tawfik, M. M. (2017). "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review", Renewable and Sustainable Energy Reviews, 75, 1239- 1253.
  • Thermo-Spectronic. (2001). Basic UV-Vis Theory, Concepts and Applications. In (pp. 1-28).
  • Timofeeva, E. V., Yu, W., France, D. M., Singh, D., Routbort, J. L. (2011). "Nanofluids for heat transfer: an engineering approach", Nanoscale Res Lett, 6 (1), 182.
  • Treacy, M. M. J., Ebbesen, T. W., Gibson, J. M. (1996). "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381 (6584), 678-680.
  • Tseng, Wu. (2002). "Aggregation, rheology and electrophoretic packing structure of aqueous A12O3 nanoparticle suspensions", Acta Materialia, 50 (15), 3757-3766.
  • Turgut, A., Sauter, C., Chirtoc, M., Henry, J. F., Tavman, S., Tavman, I., Pelzl, J. J. T. E. P. J. S. T. (2008). "AC hot wire measurement of thermophysical properties of nanofluids with 3ω method", 153 (1), 349-352.
  • Turgut, A., Tavman, I., Chirtoc, M., Schuchmann, H. P., Sauter, C., Tavman, S. (2009). "Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids", International Journal of Thermophysics, 30 (4), 1213-1226.
  • Ullah, A., Ullah, S., Khan, G. S., Shah, S. M., Hussain, Z., Muhammad, S., . . . Hussain, H. (2016). "Water soluble polyhedral oligomeric silsesquioxane based amphiphilic hybrid polymers: Synthesis, self-assembly, and applications", European Polymer Journal, 75, 67-92.
  • Vafaei, S., Borca-Tasciuc, T., Podowski, M. Z., Purkayastha, A., Ramanath, G., Ajayan, P. M. (2006). "Effect of nanoparticles on sessile droplet contact angle", Nanotechnology, 17 (10), 2523-2527.
  • Whitepaper - A Basic Introduction to Rheology. (2016). In M. I. Limited (Ed.), (pp. 9-19).
  • Wu, J., Mather, P. T. (2009). "POSS Polymers: Physical Properties and Biomaterials Applications", Polymer Reviews, 49 (1), 25-63.
  • Wu, S. (1973). "Polar and Nonpolar Interactions in Adhesion", The Journal of Adhesion, 5 (1), 39-55.
  • Xie, H., Lee, H., Youn, W., Choi, M. (2003). "Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities", Journal of Applied Physics, 94 (8), 4967-4971.
  • Xu, X., Wang, X. (2010). "Derivation of the Wenzel and Cassie Equations from a Phase Field Model for Two Phase Flow on Rough Surface", SIAM Journal of Applied Mathematics, 70, 2929-2941.
  • Yarmand, H., Gharehkhani, S., Ahmadi, G., Shirazi, S. F. S., Baradaran, S., Montazer, E., . . . Dahari, M. (2015). "Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer", Energy Conversion and Management, 100, 419-428.
  • Yu, C., Shi, L., Yao, Z., Li, D., Majumdar, A. (2005). "Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube", Nano Letters, 5 (9), 1842-1846.
  • Yu, W., Xie, H. (2012). "A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications", Journal of Nanomaterials, 2012, 17.
  • Yu, W., Xie, H., Chen, L. (2012). Nanofluids. In A. Hashim (Ed.), Smart Nanoparticles Technology: IntechOpen.
  • Zhang, T., Xue, Q., Zhang, S., Dong, M. (2012). "Theoretical approaches to graphene and graphene-based materials", Nano Today, 7 (3), 180-200.
  • Zheng, Z. Z. (2015). "Experimental Investigation on Surface Tension of Water-Based Graphene Oxide Nanofluids", Advanced Materials Research, 1082, 297-301.
APA ALYAMAÇ SEYDİBEYOĞLU E, Turgut A, Seydibeyoglu M (2019). Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. , 1 - 130.
Chicago ALYAMAÇ SEYDİBEYOĞLU Elif,Turgut Alpaslan,Seydibeyoglu M.Ozgur Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. (2019): 1 - 130.
MLA ALYAMAÇ SEYDİBEYOĞLU Elif,Turgut Alpaslan,Seydibeyoglu M.Ozgur Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. , 2019, ss.1 - 130.
AMA ALYAMAÇ SEYDİBEYOĞLU E,Turgut A,Seydibeyoglu M Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. . 2019; 1 - 130.
Vancouver ALYAMAÇ SEYDİBEYOĞLU E,Turgut A,Seydibeyoglu M Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. . 2019; 1 - 130.
IEEE ALYAMAÇ SEYDİBEYOĞLU E,Turgut A,Seydibeyoglu M "Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi." , ss.1 - 130, 2019.
ISNAD ALYAMAÇ SEYDİBEYOĞLU, Elif vd. "Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi". (2019), 1-130.
APA ALYAMAÇ SEYDİBEYOĞLU E, Turgut A, Seydibeyoglu M (2019). Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. , 1 - 130.
Chicago ALYAMAÇ SEYDİBEYOĞLU Elif,Turgut Alpaslan,Seydibeyoglu M.Ozgur Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. (2019): 1 - 130.
MLA ALYAMAÇ SEYDİBEYOĞLU Elif,Turgut Alpaslan,Seydibeyoglu M.Ozgur Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. , 2019, ss.1 - 130.
AMA ALYAMAÇ SEYDİBEYOĞLU E,Turgut A,Seydibeyoglu M Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. . 2019; 1 - 130.
Vancouver ALYAMAÇ SEYDİBEYOĞLU E,Turgut A,Seydibeyoglu M Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi. . 2019; 1 - 130.
IEEE ALYAMAÇ SEYDİBEYOĞLU E,Turgut A,Seydibeyoglu M "Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi." , ss.1 - 130, 2019.
ISNAD ALYAMAÇ SEYDİBEYOĞLU, Elif vd. "Yüzeyi Fonksiyonelize Edilmiş Nanoparçacıklar ile Kararlı Nanoakışkan Hazırlanması ve Isıl İletkenlik Değişiminin Belirlenmesi". (2019), 1-130.