43 6

Proje Grubu: MAG Sayfa Sayısı: 286 Proje No: 213M297 Proje Bitiş Tarihi: 15.04.2017 Metin Dili: Türkçe İndeks Tarihi: 25-11-2019

Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi

Öz:
Dış iskelet robotlar, insan uzuvları ile etkileşim halinde çalışan, giyilebilir elektromekanik yapılardır. Bu robotlar, yürüme engeli olan ya da yaşlı kişilerde yardımcı uzuv, felçli kişilerde rehabilitasyon ve sağlıklı insanlarda güç artırımı amacı ile kullanılmaktadır. Bu projede, insan vücudu eklemlerinin biyomekanik davranışlarından esinlenilerek enerji verimli, kararlı, güvenli, esnek ve kullanıcı ile uyumlu bir alt uzuv dış iskelet robotun biyomimetik tasarımı ve denetimi gerçekleştirilmiştir. İnsan vücudunun kas-iskelet sistemi, bağlı bulundukları eklemlerde sertlik ve sönümlemeyi devamlı değiştirerek esnek ve kararlı bir hareket kabiliyeti sağlamaktadır. Bu projede geliştirilen dış iskelet robotun bilek eklemlerinde hem sertlik hem de sönümleme değerlerini bağımsız değiştirebilen karma eyleyici tasarımı, diz ve kalça eklemlerinde ise seri elastik eyleyici ile sönümlemesi değiştirilebilir eyleyici içeren karma eyleyici tasarımları kullanılmıştır. Böylece, bütün eklemlerde mekanik olarak ayarlanabilir empedans (sertlik ve sönümleme) değerleri ile çalışabilen biyomimetik esnek bir dış iskelet robot literatüre kazandırılmıştır. Dış iskelet robotun geliştirilmesi aşamasında, sertliği değiştirilebilir eyleyiciler, sönümlemesi değiştirilebilir eyleyiciler ve dış iskelet robotun bütünü için benzetim çalışmaları gerçekleştirilmiştir ve dış iskelet robotun bir bütün olarak üretimi yapılmıştır. Bu dış iskelet robotun kontrol performansını denemek için de bir dizi deneysel kontrol çalışmaları gerçekleştirilmiştir. Gerçekleştirilen bu deneysel çalışmalar; sertliği değiştirilebilir eyleyicinin kuvvet kontrol ve pozisyon kontrol deneyleri, insan bilek sertliğinin EMG sinyalleri tabanlı gerçek zamanlı olarak kestirimi, bunun sertliği değiştirilebilir eyleyiciye uygulanması, sönümlemesi değiştirilebilir eyleyicinin istenen sönümleme torklarının kontrolü deneyleri, bu iki eyleyicinin birleşiminden oluşan karma eyleyicinin deneysel performans çalışmaları ve daha sonrada geliştirilen dış iskelet robotun kullanıcı-baskın ve robot-baskın kontrol deneylerdir. Böylelikle, bu projede biyomimetik bir dış iskelet robotun tasarımı ve üretimi gerçekleştirilmiş, kontrol çalışmaları deneysel olarak denenerek robotun temel performans değerlendirmeleri yapılmıştır.
Anahtar Kelime: sönümlemesi değiştirilebilir eyleyici sertliği değiştirilebilir eyleyici Dış iskelet robot

Konular: Bilgisayar Bilimleri, Yazılım Mühendisliği Robotik Bilgisayar Bilimleri, Sibernitik
Erişim Türü: Erişime Açık
  • Ahn, Y.K., Yang, B.S., Ahmadian M. And Morishita S. 2005. “A small-sized variable-damping mount using magnetorheological fluid. Journal of Intelligent Material Systems and Structures”, cilt 16: sf 127–33.
  • Dış iskelet Robot Eklemleri için Antagonisttik ve Öngerilmeli Tip SertliğiDeğiştirilebilir Eyleyici Tasarımlarında Güç Gereksinimi ve Enerji SarfiyatıKarşılaştırması (Makale - Diğer Hakemli Makale)
  • Ansys Maxwell, 2013, Available: www.ansys.com.
  • Comparison of Controllable Transmission Ratio Type Variable Stiffness Actuator with Antagonistic and Pre-tension type Actuators for Joints of Exeskeleton Robots (Bildiri - Uluslararası Bildiri - Poster Sunum)
  • Argo Medical Technologies, 2011, Available: http://www.argomedtec.com/.
  • Dış iskelet Robot Eklemleri için Antagonistik ve İletim Oranı ile Düzenlenen Sertliği Değiştirilebilir Eyleyici Tasarımlarının Güç Gereksinimi ve Enerji Sarfiyatı Açısından Karşılaştırılması (Bildiri - Ulusal Bildiri - Sözlü Sunum)
  • Ashour, O., Rogers, C. A. and Kordonsky, W. 2010. “Magnetorheological fluids: materials, characterization and devices”, Journal of Intelligent Material Systems and Structures. Cilt 7: sf. 123.
  • Comparison of 4-Pole with 225 Coil-Turns and 6-Pole with 150 Coil-Turns Multi-Pole Inner Coil Rotary MR Brake Designs (Makale - Diğer Hakemli Makale)
  • Avraam, M., Horodinca, M., Romanescu, I., and Preumont, A. 2010. “Computer controlled rotational MR-brake for wrist rehabilitation device”, Journal of Intelligent Materials Systems and Structures, cilt 21: sf 1543–57.
  • Mechanical Design of a Biomimetic CompliantLower Limb Exoskeleton (BioComEx) (Bildiri - Uluslararası Bildiri - Sözlü Sunum)
  • Bishop, R. H. 2008. “Mechatronic Systems, Sensors, and Actuators: Fundamentals and Modeling” [Book], Texas, Austin: CRC Press.
  • Selection and implementation ofoptimal magnetorheological brakedesign for a variable impedanceexoskeleton robot joint (Makale - İndeskli Makale)
  • Bouri, M., Stauffer, Y. and Schmitt, C., et al. 2006. “The walktrainer: a robotic system for walking rehabilitation”, In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Kunming-China, pp. 1616-1621.
  • Alt Uzuv Dış İskelet Robot Eklemlerinde Kararlılık İçin Sönümleme Katsayıları veMomentlerinin Hesaplanması (Makale - Diğer Hakemli Makale)
  • Bovi, G., Rabuffetti, M., Mazzoleni, P. and Ferrarin, M. 2010. “A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects”, Gait and Posture, Vol: 33 pp.6-13.
  • Catalano, M., Grioli, G., Garabini, M., Bonomo, F., Mancini, M., Tsagarakis, N. and Bicchi, A. 2011. “VSA-CubeBot: a modular variable stiffness platform for multiple degrees of freedom robots”, IEEE International Conference on Robotics and Automation (ICRA 2011), 5090-5095.
  • Choi, S.B., Song, H.J., Lee, H.H., Lim, S.C., Kim, J.H. and Choi, H.J. 2003. “Vibration control of a passenger vehicle featuring magnetorheological engine mounts”, International Journal of Vehicle Design, cilt 33: sf 2–16.
  • Chu, A., Kazerooni, H. and Zoss, A. 2005. “On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)”, Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, April.
  • Colombo, G., Jorg, M. and Dietz, V. 2000. "Driven Gait Orthosis to do Locomotor Training of Paraplegic Patients", Proceedings o f the 22nd Annual International Conference o f the IEEE Engineering in Medicine and Biology Society (EMBS), Vol. 4, pp. 3159-3163, Chicago, Illinois.
  • Crenna, P. and Frigo, C. 2011. “Dynamics of the ankle joint analyzed through moment-angle loops during human walking: gender and age effects”, Human Movement Science 30: 1185– 1198.
  • Dempster, W. T., Gabel, W. C. and Felts, W. J. L. 1959. “The Anthropometry of Manual Work Space for the Seated Subjects”, American Journal of Physical Anthropology, cilt 17: sf. 289– 317.
  • Drillis, R. and Contini, R. 1966. “Body Segment Parameters”, Rep. 1163-03, Office of Vocational Rehabilitation, Department of Health, Education, and Welfare, New York.
  • Du, H.P. Sze, K.Y. and Lam, J. 2005. “Semi-active H-infinity control of vehicle suspension with magneto-rheological dampers”, Journal of Sound and Vibration, cilt 283: sf 981–96.
  • Duindam, V. and Stramigioli, S. 2005. ‘‘Optimization of mass and stiffness distribution for efficient bipedal walking,’’ in Proc. Int. Symp. Nonlinear Theory and Its Applications, pp. 481– 484.
  • Dumas, R. and Cheze, L. 2008. “Hip and knee joints are more stabilized than driven during the stance phase of gait: An analysis of the 3D angle between joint moment and joint angular velocity”, Gait & Posture 28: 243–250.
  • Dyke, S.J, Spencer, B.F. Sain, M.K. and Carlson, J.D. 1996. “Modeling and control of magnetorheological dampers for seismic response reduction”, Smart Material Structures, cilt 5: sf 565–75.
  • Els, P.S. and Holman, T.J. 1999. “Semi-active rotary damper for a heavy off-road wheeled vehicle”, Journal of Terramechanics, cilt36: sf. 51–60.
  • Farjoud, A., Vahdati, N., and Fah, Y.F. 2008, “MR-fluid yield surface determination in disc-type MR rotary brakes”, Smart Mater Struct, 17:035021.
  • Farris, D. J. and Sawicki, G.S. 2012. “Linking the mechanics and energetics of hopping with elastic ankle exoskeletons”, J Appl Physiol. 113(12): 1862–1872.
  • Ferris, D. and Lewis, C. 2009. “Robotic lower limb exoskeletons using proportional myoelectric control”, EMBC Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2119–2124.
  • Freivogel, S., Mehrholz, J., Husak-Sotomayor. T.A. and Schmalohr, D. 2008. “Gait training with the newly developed “LokoHelp”-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury”, A feasibility study. Brain Inj ; 22: 625–632.
  • Freivogel, S., Schmalohr, D. and Mehrholz, J. 2009. “Improved Walkıng Abılıty and Reduced Therapeutıc Stress wıth An Electromechanıcal Gaıt Devıce”, J Rehabil Med ; 41: 734–739.
  • Geyer, H., Herr, HM. 2010. “A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities”. IEEE Trans Neural Syst Rehabil Eng 18(3): 263-273.
  • Giorgetti, A., Baldanzini, N., Biasiotto, M. and Citti, P. 2010. “Design and testing of a MRF rotational damper for vehicle applications”, Smart Materials and Structures, cilt 19:065006.
  • Gunther, M. and Blickhan, R. 2002. “Joint stiffness of the ankle and the knee in running”, Journal of Biomechanics 35: 1459–1474.
  • Hollander, K. and Sugar, T. 2004. ‘‘Concepts for compliant actuation in wearable robotic systems,’’ in Proc. US-Korea Conf. Science, Technology and Entrepreneurship (UKC’04), vol. 128, pp. 644–650.
  • Hollander, K., Sugar, T. and Herring, D. 2005. ‘‘Adjustable robotic tendon using a ‘‘jack spring’’,’’ in Proc. 9th Int. Conf. Rehabilitation Robotics (ICORR’05), June–July, pp. 113–118.
  • Hortoba ́gyi, T., Herring, C., Pories, W.J., Rider, P. and DeVita, P. 2011. “Massive weight loss- induced mechanical plasticity in obese gait”, Journal of Applied Physiology 111: 1391–1399.
  • http://.papapostolou.gr/product/PhysicalTherapyEquipment/ReoAmbulator, 2007.
  • Huang, J, Zhang, J.Q, Yang, Y. and Wei, Y.Q. 2002. “Analysis and design of a cylindricalmagneto-rheological fluid brake”, J Mater Process Technol, 129:559–62.
  • Hurst, R. W., Chestnutt, J. and Rizzi, A. 2004. ‘‘An actuator with mechanically adjustable series compliance,’’ Carnegie Mellon Univ., USA, CMU-RI-TR-04-24.
  • Imaduddin, F., Mazlan, S. A., Zamzuri, H. 2013. “A design and modelling review of rotary magnetorheological damper”, Materials & Design, Volume 51, October 2013, Pages 575–591.
  • Jafari, A., Tsagarakis, N, Vanderborght, B. and Caldwell, D. 2010. “A novel actuator with adjustable stiffness (AwAS)”, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pp. 4201–4206.
  • Jafari, A., Tsagarakis, N. and Caldwell, D. 2011. “AwAS-II: A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio”, in: IEEE International Conference on Robotics and Automation (ICRA), pp. 4638–4643.
  • Karakoc, K, Park, E.J and Suleman, A. 2008. “Design considerations for an automotive magnetorheological brake”, Mechatronics; cilt 18: sf 434–47.
  • Karmel, A.M. 1987. “Modeling and analysis of the dynamics of a variable-displacement vane- pump with a pivoting cam”, American Control Conference, sf 1549–55.
  • Kawamoto, H. and Sankai, Y. 2002. “Power assist system hal-3 for gait disorder person”, In Proceedings of the 8th International Conference on Computers Helping People with Special Needs, London-UK, pp. 196-203.
  • Kawase, T., Kambara, H. and Koike, Y. 2012. “A Power Assist Device Based on Joint Equilibrium Point Estimation from EMG Signals”, Journal of Robotics and Mechatronics, Vol.24 No.1, pp. 205-218.
  • Kielan, P., Kowol, P. and Pilch, Z. 2011. “Conception of the electronic controlled magnetorheological clutch”, Przeglad Elektrotechniczny, cilt 87: sf 93–5.
  • Kikuchi, T. And Kobayashi, K. 2011. “Design and development of cylindrical MR fluid brakewith multi-coil structure”, Journal of System Design and Dynamics, cilt 5: sf 1471–84.
  • Khosla A., Leena, G., Soni M. K., 2013. “Performance Evaluation of various Control Techniques for Inverted Pendulum”, International Journal of Engineering Research and Applications (IJERA), Vol. 3, Issue 4, pp.1096-1102.
  • Lampe, D. and Grundmann, R. 2000. “Transitional and solid state behaviour of a magnetorheological clutch”, Proceeding Actuator (Germany).
  • Leicht, Z., Urreta, H., Sanchez, A., Agirre, A., Kuzhir, P. and Magnac, G. 2009. “Theoretical and experimental analysis of MR valve”, Journal of Physics.: Conf. Ser. 149 012070.
  • Li, W.H. and Du, H. 2003. “Design and experimental evaluation of a magnetorheological brake”, International Journal of Advanced Manufacturing Technology, cilt 21:sf 508–15.
  • Liu, B., Li W.H., Kosasih, P.B. and Zhang, X.Z. 2006. “Development of an MR-brake-based haptic device”, Smart Materials and Structures, cilt 15:1 sf 960–6.
  • Lord Technical Data, 2012. MRF-122EG Magneto-Rheological Fluid, www.lord.com. Migliore, S.A., Brown, E.A. and DeWeerth, S.P. 2005. ‘‘Biologically inspired joint stiffness control,’’ in Proc. IEEE Int. Conf. Robotics and Automation (ICRA’05), Apr., pp. 4519–4524.
  • Morita, T. and Sugano, S. 1995. ‘‘Development of a new robot joint using a mechanical impedance adjuster,’’ in Proc. IEEE Int. Conf. Robotics and Automation (ICRA’95), May., vol. 3, pp. 2469–2475.
  • Motorica Therapy with Robotic Touch, 2013, Available: http://motorika.com/reoambulator/ Muratoğlu Y., Alkaya A., 2014. “Kalman Filtresi ile LQR ve PI Denetleyicilerin DC Motor Sistemine Uygulanması”, Elektrik–Elektronik–Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, Bursa.
  • Naito, H., Akazawa, Y., Tagaya, K., Matsumoto, T. and Tanaka, M. 2009. “An ankle-foot orthosis with a variable-resistance ankle joint using a magnetorheological-fluid rotary damper”, Journal of Biomechanical Science and Engineering, cilt 4: sf 182–91.
  • Nam, Y.J, Moon, Y.J. and Park, M.K. 2007. “Performance improvement of a rotary MR fluidactuator based on electromagnetic design”, Journal of Intelligent Materials Systems and Structures, cilt 19: sf 695–705.
  • Nam, T.H. and Ahn, K.K. 2009. “A new structure of a magnetorheological brake with the wave form boundary of a rotary disk”, Smart Materials and Structures; cilt 18:115029.
  • Nam, T.H. and Ahn, K.K. 2009. “New approach to designing an MR brake using a small steel roller and MR fluid”, Journal of Mechanical Science and Technology, cilt 23: sf 1911–23.
  • Neelakantan, V.A. and Washington, G.N. 2005. “Modeling and reduction of centrifuging in magnetorheological (MR) transmission clutches for automotive applications”, Journal of Intelligent Material Systems and Structures, cilt 16: sf 703–11.
  • Nguyen, Q.H. and Choi, S.B. 2010. “Optimal design of an automotive magnetorheologicalbrake considering geometric dimensions and zero-field friction heat”, Smart Materials and Structures, cilt 19:115024.
  • Nguyen, P.B. and Choi, S.B. 2011. “A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake”, Smart Materials and Structures, cilt 20:125003.
  • Nguyen, Q.H., Nguyen, P.B. and Choi, S.B. 2011. “Optimal design of a hybrid MR brake for haptic wrist application”, In: Active and Passive Smart Structures and Integrated Systems, San Diego (CA): SPIE; 2011. sf 797718.
  • Nguyen, T.M., Ciocanel, C., Elahinia, M.H. 2012. “A squeeze-flow mode magnetorheological mount: design, modeling, and experimental evaluation”, Journal of Vibration and Acoustics, sf 134.
  • Nguyen, Q.H, Choi, S.B. 2012. “Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume”, Smart Materials and Structures, cilt 21:015012. Online at stacks.iop.org/SMS/21/015012.
  • Nguyen, Q.H, Choi, S.B. 2012. “Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux”, Smart Materials and Structures, cilt 21:055003.
  • Ogata, K., 2010. Modern Control Engineering. ISBN: 0136156738, Prentice Hall.
  • Orosco, E.C., Lopez, M.N. and Sciascio, F. 2013. “Bispectrum-based features classification for myoelectric control”, Biomedical Signal Processing and Control, 8, 153-168.
  • Rabinow, J. 1948. “The magnetic fluid clutch”, Transmission American Institute of Electrical Engineering, cilt 67: sf 1308–15.
  • Rabinow, J. 1951. “Magnetic fluid torque and force transmitting device”, US Patent 2.575.360. Park, E.J. Stoikov, D, da Luz, L.F, Suleman, A. 2006. “A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller”, Mechatronics, cilt 16: sf 405–16.
  • Park, E.J. da Luz, LF. Suleman, A. 2008. “Multidisciplinary design optimization of anautomotive magnetorheological brake design”, Computers and Structures, cilt 86: sf 207.
  • Parlak, Z., Engin, T., Ari, V., Sahin, I., Calli, I. 2010. “Geometrical optimization of vehicle shock dampers with magnetorheological fluid”, International Journal of Vehicle Design, cilt 54: sf 371– 92.
  • Perry, J. 1992. “Gait Analysis: Normal and Pathological Function” [Book Section]. - New Jersey:SLACK Inc.
  • Phinyomark, A., Phukpattaranont, P. and Limsakul, C. 2012. “Feature reduction and selection for EMG signal classification”, Expert Systems with Applications, 39, 7420-7431.
  • Rose, J. and Gamble, J. 2006. “Human Walking, 3rd Edition“[Book]. - [s.l.] : Lippincott Williams & Wilkins. Pratt, G. A. and Williamson, M. M. 1995. “Series elastic actuators,’’ in Proc. IEEE Int. Workshop on Intelligent Robots and Systems (IROS’95), Pittsburg, USA, pp. 399–406.
  • Sapinski, B. and Bydon, S. 2003. “Application of magnetorheological fluid brake to shaft position control in induction motor AMAS”, Workshop on Smart Materials and Structures (Jadwisin) sf 169–80.
  • Schiavi, R., Grioli, G., Sen, S. and Bicchi, A. 2008. “VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans”, in: IEEE International Conference on Robotics and Automation (ICRA 2008), pp. 2171–2176.
  • Senkal, D. and Gurocak, H. 2009. “Compact MR-brake with serpentine flux path for haptics applications”, In: Third joint Eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems, Salt Lake City, UT, USA, IEEE; 2009. sf 91–6.
  • Shamaei, K. and Dollar, A. 2011. “On the Mechanics of the Knee During the Stance Phase of the Gait”, IEEE- International Conference on Rehabilitation Robotics (ICORR).
  • Shamaei, K., Sawicki, G.S. and Dollar, A.M. 2013. “Estimation of Quasi-stiffness of the Human Hip in the Stance Phase of Walking”, PLoS ONE 8(12), e81841.doi, 10.1371/Journal.pone.0081841.
  • Shamaei, K., Sawicki, G.S. and Dollar, A.M. 2013. “Estimation of Quasi-stiffness of the Human Knee in the Stance Phase of Walking”, PLoS ONE 8(3), e59935.doi, 10.1371/Journal.pone.0059993.
  • Shamaei, K., Sawicki, G.S., Dollar, A.M. 2013. “Estimation of Quasi-stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking”, PLoS ONE 8(3), e59935.doi, 10.1371/Journal.pone.0056635.
  • Shamaei, K., Napolitano, P., Dollar, A. 2013. “A Quasi-Passive Compliant Stance Control Knee- Ankle-Foot Orthosis”, IEEE International Conference on Rehabilitation Robotics (ICORR), Seattle.
  • Shiao, Y., Nguyen, QA. and Zang, Z. 2015. “Design and experiment of a new magnetoreological brake”, International Journal of Applied Electromeagnetics and mechanics, vol 48 pp 309-326.
  • Shiao, Y. ve Nyugen, Q. A. 2013, “Development of a multi-pole magnetorheological brake”, Samart Materials and Structures, Vol: 22, Number 6
  • Shin, D., Kim, J., and Koike, Y. 2009. “A Myokinetic Arm Model for Estimating Joint Torque and Stiffness From EMG Signals During Maintained Posture”, J Neurophysiol, 101: 387–401, pp.387-401.
  • Skinner, S., Antonelli, D., Perry, J. and Lester, D. 1985. “Functional demands on the stance limb in walking”, Orthopedics, 8: 355–361.
  • Sukhwani, V.K. and Hirani, H. 2008. “Design, development, and performance evaluation of high- speed magnetorheological brakes”, Proceedings of the Institution of Mechanical Engineers, cilt L222: sf 73–82.
  • Şenol H., 1999. “Bulanık Mantık Temelli Kayma Kipli Kontrol”, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
  • Thompson, D.F. and Kremer, GG. 1997. “Quantitative feedback design for a variable displacement hydraulic vane pump”, cilt 2: sf 1061–5.
  • Tonietti, G., Schiavi, R. and Bicchi, A. 2005. “Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction”, IEEE Int. Conf. Robotics and Automation, Spain pp. 526–531.
  • Tse, T. and Chang, CC. 2004. “Shear-mode rotary magnetorheological damper for smallscale structural control experiments”, Journal of Structural Engineering – ASCE, cilt 130: sf 904–11.
  • Van Ham, R., Van Damme, M., Verrelst, B., Vanderborght B. and Lefeber D. 2007. ‘‘MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: A 3DOF joint with 2 independent compliances’’, Int. Appl. Mech., vol. 4, pp. 130–142, Apr.
  • Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B. and Lefeber, D. 2007. ‘‘MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot,’’ Robot. Autonom. Syst., vol. 55, no. 10, pp. 761–768.
  • Vanderborght, B., Tsagarakis, N., Van Ham, R., Thorson, I. and Caldwell, D. 2009.”Maccepa 2.0: compliant actuator used for energy efficient hopping robot”, Autonomous Robots, 1–11.
  • Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Cald-well, D., Carloni, R., Catalano, M., Ganesh, G., Garabini, M., Grioli, G., Haddadin, S., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Grebenstein, A., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L. and Wolf, S. 2012. “Variable impedance actuators: Moving the robots of tomorrow”, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012).
  • Veneman, J. F., Menger, J., Van Asseldonk, E. H.F., Van der Helm, F.C.T., and Van der Kooij, H. 2007. "Fixating the pelvis in the horizontal plane affects gait characteristics," Gait & Posture.
  • Veneman, J. F., Kruidhof, R., Hekman, E.E.G., Ekkelenkamp, R., E., Van Asseldonk, E.H.F., and Van der Kooij, H. 2007. "Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, pp. 379-386.
  • Verrelst, B., Van Ham, R., Vanderborght, B., Daerden, F. and Lefeber, D. 2005. ‘‘The pneumatic biped LUCY actuated with pleated pneumatic artificial muscles,’’ Autonom. Robots, vol. 18, no. 13, pp. 201–213.
  • Wang, R. and Huang, H. 2010. “An Active-Passive Variable Stiffness Elastic Actuator for Safety Robot Systems”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.18- 22, Taiwan.
  • Whittle, M. W. 2003. “Gait analysis: an introduction”, 4th Edition. Heidi Harrison. Winter, D. A. 1984. “Kinematic and Kinetic Patterns in Human Gait: Variability and Compensating Effects”, Human Movement Science, cilt 3: sf. 51–76.
  • Winter, D. 1991. “The Biomechanics and Motor Control of Human Gait :Normal, Elderly and Pathological”, Waterloo, Ont.: University of Waterloo Press., 143 p.
  • Winter, D. 2005. “Biomechanics and motor control of human movement”, John Wiley & Sons, Hoboken, New Jersey.
  • Wolf, S. and Hirzinger, G. 2008. ‘‘A new variable stiffness design: Matching requirements of the next robot generation,’’ in accepted at ICRA 2008: IEEE International Conference on Robotics and Automation (ICRA2008).
  • Zhen, Z., Zhen, W., Songli, Y., Yanan, Z. and Jinwu, Q. 2008. “Research On Control of an Exoskeletal Ankle With Surface Electromyography Signals”, The 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 1301-1304.
  • Zhou, W., Chew, CM., and Hong, GS. 2007. “Development of a compact double-disk magnetorheological fluid brake”, Robotica, cilt 25: sf 493–500.
  • Zhu, C. 2005. “Dynamic performance of a disk-type magnetorheological fluid damper under AC excitation”, Journal of Intelligent Materials Systems and Structures, cilt 16: sf 449–61.
  • Zoss, A., Kazerooni, H. and Chu, A. 2005. "On the mechanical design of the Berkeley lower extremity exoskeleton (BLEEX)," pp. 3465-3472.
APA başer ö, GÜRSES S, Kilic E, TILKI U (2017). Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. , 1 - 286.
Chicago başer özgür,GÜRSES Senih,Kilic Ergin,TILKI UMUT Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. (2017): 1 - 286.
MLA başer özgür,GÜRSES Senih,Kilic Ergin,TILKI UMUT Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. , 2017, ss.1 - 286.
AMA başer ö,GÜRSES S,Kilic E,TILKI U Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. . 2017; 1 - 286.
Vancouver başer ö,GÜRSES S,Kilic E,TILKI U Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. . 2017; 1 - 286.
IEEE başer ö,GÜRSES S,Kilic E,TILKI U "Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi." , ss.1 - 286, 2017.
ISNAD başer, özgür vd. "Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi". (2017), 1-286.
APA başer ö, GÜRSES S, Kilic E, TILKI U (2017). Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. , 1 - 286.
Chicago başer özgür,GÜRSES Senih,Kilic Ergin,TILKI UMUT Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. (2017): 1 - 286.
MLA başer özgür,GÜRSES Senih,Kilic Ergin,TILKI UMUT Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. , 2017, ss.1 - 286.
AMA başer ö,GÜRSES S,Kilic E,TILKI U Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. . 2017; 1 - 286.
Vancouver başer ö,GÜRSES S,Kilic E,TILKI U Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi. . 2017; 1 - 286.
IEEE başer ö,GÜRSES S,Kilic E,TILKI U "Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi." , ss.1 - 286, 2017.
ISNAD başer, özgür vd. "Biyomimetik Bir Alt Uzuv Dış Iskelet Robotun Tasarımı Ve Denetimi". (2017), 1-286.