PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği

32 16

Proje Grubu: MAG Sayfa Sayısı: 87 Proje No: 315M556 Proje Bitiş Tarihi: 15.06.2017 Metin Dili: Türkçe İndeks Tarihi: 11-12-2019

PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği

Öz:
Bu projenin birinci bölümünün amacı, özünde çok gevrek bir malzeme olan polilaktitin (PLA) E-cam elyafları (GF) ile takviye edilerek ve termoplastik poliüretan elastomer (TPU) ile harmanlanarak optimum mekanik özelliklerinin (mukavemet-modül-tokluk) elde edilebilirliğini araştırmaktır. Kompozitler ve harmanlar, çift vidalı ekstrüder kullanılarak eriyik karıştırma yöntemi ile üretilmiş ve numuneler enjeksiyon kalıplama yöntemi ile şekillendirilmiştir. SEM analizleri sonucunda görülmüştür ki ağırlıkça %15 GF takviyesi ve ağırlıkça %10 TPU fazları ayrı ayrı ve bir arada kullanıldıkları durumlarda PLA matrisinde homojen bir dağılım sergilemişler ve özelliklerde belirgin iyileşmelere sebep olmuşlardır. Mekanik testler, tek başına TPU harmanlamanın süneklik ve kırılma tokluğu değerlerinde muazzam artışlarla sonuçlandığını, GF takviyelerinin ise mukavemet ve elastik modül değerlerinde önemli artışlara neden olduğunu göstermiştir. GF ve TPU birlikte eklendiğinde, GF takviyelerinin çatlak sapması (crack deflection), matris-elyaf ayrışması (debonding) ve elyaf çıkması (pull- out) toklaştırma mekanizmalarının en az TPU harmanlamanın elastomerik toklaştırma (rubber toughening) mekanizması kadar etkili olduğu gözlenmiştir. Ek olarak, DSC termogramları, özellikle GF takviyelerinin ve mikron boyutlu TPU fazlarının heterojen çekirdeklendirici gibi davranarak PLA'nın kristallenme miktarının yaklaşık iki kat arttırdığını ortaya koymuştur. Bu projenin ikinci bölümünün amacı ise, geleneksel enjeksiyon kalıplama tekniği ile şekillendirilmiş polilaktit (PLA) esaslı malzemelerin 3D yazıcı / eklemeli üretim tekniğine karşı performansını karşılaştırmaktır. Karşılaştırmalar yalnızca saf PLA için değil aynı zamanda termoplastik poliüretan elastomer (TPU) harmanı ve E-cam elyafı (GF) takviyeli kompozitler için gerçekleştirilmiştir. Enjeksiyon kalıplama ve 3D yazıcı teknikleri ile şekillendirilmiş numunelerin performansları, özellikle mukavemet-modül-tokluk mekanik özelliklerini kıyaslamak amacıyla çekme, eğme ve kırılma tokluğu testleri ile karşılaştırılmıştır. Makroskopik inceleme, kırılma yüzeyi incelemesi ve ısıl özellikler fotografik görüntüleme, SEM, DSC ve TGA analizleri ile gerçekleştirilmiştir. Saf PLA ve PLA/TPU harmanları için 3D yazıcı tekniği ile şekillendirmenin genel olarak oldukça iyi sonuçlar verdiği gözlemlenirken, GF takviyesinin oryantasyonundaki farklılıklardan dolayı PLA/GF ve PLA/TPU/GF kompozit numunelerin mekanik performansında belirli kayıplar olabildiği gözlemlenmiştir.
Anahtar Kelime: termoplastik poliüretan elastomer cam elyaf polilaktit enjeksiyon kalıplama 3D yazıcı tekniği

Konular: Malzeme Bilimleri, Kompozitler
Erişim Türü: Erişime Açık
  • Ahmed, I., Cronin, P. S., Abou Neel, E. A., Parsons, A. J., Knowles, J. C., & Rudd, C. D. (2009). Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. J Biomed Mater Res B Appl Biomater, 89(1), 18–27. https://doi.org/10.1002/jbm.b.31182
  • Ahmed, I., Jones, I. A., Parsons, A. J., Bernard, J., Farmer, J., Scotchford, C. A., ... Rudd, C. D. (2011). Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture. J Mater Sci Mater Med, 22(8), 1825–1834. https://doi.org/10.1007/s10856-011-4361-0
  • Bitinis, N., Verdejo, R., Cassagnau, P., & Lopez-Manchado, M. A. (2011). Structure and properties of polylactide/natural rubber blends. Materials Chemistry and Physics, 129(3), 823–831. https://doi.org/10.1016/j.matchemphys.2011.05.016
  • Carneiro, O. S., Silva, A. F., & Gomes, R. (2015). Fused deposition modeling with polypropylene. Materials & Design, 83, 768–776. https://doi.org/http://doi.org/10.1016/j.matdes.2015.06.053
  • Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Applied Materials & Interfaces, 9(4), 4015– 4023. https://doi.org/10.1021/acsami.6b11793
  • Chen, Y., Geever, L. M., Killion, J. A., Lyons, J. G., Higginbotham, C. L., & Devine, D. M. (2016). Review of Multifarious Applications of Poly (Lactic Acid). Polymer-Plastics Technology and Engineering, 55(10), 1057–1075. https://doi.org/10.1080/03602559.2015.1132465
  • Columbus, L. (2016). The State of 3D Printing 2016. Forbes. Retrieved from https://www.forbes.com/sites/louiscolumbus/2016/06/08/the-state-of-3d-printing- 2016/#4c6047ff1313
  • Cotteleer, M. J. (2014). 3D Opportunity: Additive Manufacturing Paths to Performance, Innovation, and Growth. Retrieved November 27, 2015, from http://simt.com/uploads/4881/SIMT_AM_Conference_Keynote.pdf
  • Dai, J., Bai, H., Liu, Z., Chen, L., Zhang, Q., & Fu, Q. (2016). Stereocomplex crystallites induce simultaneous enhancement in impact toughness and heat resistance of injection-molded polylactide/polyurethane blends. RSC Advances, 6(21), 17008–17015. https://doi.org/10.1039/C6RA00051G
  • Domenek, S., & Ducruet, V. (2016). Characteristics and Applications of PLA. In Biodegradable and Biobased Polymers for Environmental and Biomedical Applications (pp. 171–224). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119117360.ch6
  • Drobny, J. G. (2014). 9 - Thermoplastic Polyurethane Elastomers BT - Handbook of Thermoplastic Elastomers (Second Edition). In Plastics Design Library (pp. 233–253). Oxford: William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323- 22136-8.00009-0
  • Drummer, D., Cifuentes‐Cuéllar, S., & Rietzel, D. (2012). Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyping Journal, 18(6), 500–507. https://doi.org/10.1108/13552541211272045
  • Duigou, A. Le, Castro, M., Bevan, R., & Martin, N. (2016). 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Materials & Design, 96, 106– 114. https://doi.org/http://doi.org/10.1016/j.matdes.2016.02.018
  • Fazita, M. R. N., Jayaraman, K., Bhattacharyya, D., Haafiz, M. K. M., Saurabh, C., Hussin, M., & Abdul, H. P. S. (2016). Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review. Materials, 9(6), 435. https://doi.org/10.3390/ma9060435
  • Felfel, R. M., Ahmed, I., Parsons, A. J., Palmer, G., Sottile, V., & Rudd, C. D. (2013). Cytocompatibility, degradation, mechanical property retention and ion release profiles for phosphate glass fibre reinforced composite rods. Mater Sci Eng C Mater Biol Appl, 33(4), 1914–1924. https://doi.org/10.1016/j.msec.2012.12.089
  • Felfel, R. M., Ahmed, I., Parsons, A. J., & Rudd, C. D. (2013a). Bioresorbable composite screws manufactured via forging process: pull-out, shear, flexural and degradation characteristics. J Mech Behav Biomed Mater, 18, 108–122. https://doi.org/10.1016/j.jmbbm.2012.11.009
  • Felfel, R. M., Ahmed, I., Parsons, A. J., & Rudd, C. D. (2013b). Bioresorbable screws reinforced with phosphate glass fibre: manufacturing and mechanical property characterisation. J Mech Behav Biomed Mater, 17, 76–88. https://doi.org/10.1016/j.jmbbm.2012.08.001
  • Felfel, R. M., Ahmed, I., Parsons, A. J., Walker, G. S., & Rudd, C. D. (2011). In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods. J Mech Behav Biomed Mater, 4(7), 1462–1472. https://doi.org/10.1016/j.jmbbm.2011.05.016
  • Feng, F., & Ye, L. (2011). Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. Journal of Applied Polymer Science, 119(5), 2778–2783. https://doi.org/10.1002/app.32863
  • Filaments.directory - 3D Printer Filament Trends : July 2017. (n.d.). Retrieved July 23, 2017, from https://www.filaments.directory/en/trends#statistics
  • Fischer, E. W., Sterzel, H. J., & Wegner, G. (1973). Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift Und Zeitschrift Für Polymere, 251(11), 980–990. https://doi.org/10.1007/BF01498927
  • Franchetti, M., & Kress, C. (2017). An economic analysis comparing the cost feasibility of replacing injection molding processes with emerging additive manufacturing techniques. The International Journal of Advanced Manufacturing Technology, 88(9–12), 2573–2579. https://doi.org/10.1007/s00170-016-8968-7
  • Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive Manufacturing Technologies. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-1120-9
  • Guo, S., Yang, X., Heuzey, M.-C., & Therriault, D. (2015). 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale, 7(15), 6451–6456. https://doi.org/10.1039/C5NR00278H
  • Gupta, A. P., & Kumar, V. (2007). New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. European Polymer Journal, 43(10), 4053–4074. https://doi.org/10.1016/j.eurpolymj.2007.06.045
  • Han, J.-J., & Huang, H.-X. (2011). Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. Journal of Applied Polymer Science, 120(6), 3217–3223. https://doi.org/10.1002/app.33338
  • Han, N., Ahmed, I., Parsons, A. J., Harper, L., Scotchford, C. A., Scammell, B. E., & Rudd, C. D. (2013). Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates. J Biomater Appl, 27(8), 990–1002. https://doi.org/10.1177/0885328211431855
  • Haque, P., Barker, I. A., Parsons, A., Thurecht, K. J., Ahmed, I., Walker, G. S., ... Irvine, D. J. (2010). Influence of compatibilizing agent molecular structure on the mechanical properties of phosphate glass fiber-reinforced PLA composites. Journal of Polymer Science Part A: Polymer Chemistry, 48(14), 3082–3094. https://doi.org/10.1002/pola.24086
  • Haque, P., Parsons, A. J., Barker, I. A., Ahmed, I., Irvine, D. J., Walker, G. S., & Rudd, C. D. (2010). Interfacial properties of phosphate glass fibres/PLA composites: Effect of the end functionalities of oligomeric PLA coupling agents. Composites Science and Technology, 70(13), 1854–1860. https://doi.org/10.1016/j.compscitech.2010.06.012
  • Hasan, M., Hassan, A., & Zakaria, Z. (2016). Poly(Lactic Acid) Hybrid Green Composites. In Biodegradable Green Composites (pp. 149–166). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118911068.ch6
  • Hasan, M. S., Ahmed, I., Parsons, A. J., Walker, G. S., & Scotchford, C. A. (2013). The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites. J Mech Behav Biomed Mater, 28, 1–14. https://doi.org/10.1016/j.jmbbm.2013.07.014
  • Hasan, M. S., Ahmed, I., Parsons, A., Walker, G., & Scotchford, C. (2012). Cytocompatibility and Mechanical Properties of Short Phosphate Glass Fibre Reinforced Polylactic Acid (PLA) Composites: Effect of Coupling Agent Mediated Interface. J Funct Biomater, 3(4), 706–725. https://doi.org/10.3390/jfb3040706
  • Hong, H., Yang, L., Yuan, Y., Qu, X., Chen, F., Wei, J., & Liu, C. (2016). Preparation, rheological properties and primary cytocompatibility of TPU/PLA blends as biomedical materials. Journal of Wuhan University of Technology-Mater. Sci. Ed., 31(1), 211–218. https://doi.org/10.1007/s11595-016-1354-3
  • Huber, C., Abert, C., Bruckner, F., Groenefeld, M., Muthsam, O., Schuschnigg, S., ... Suess, D. (2016). 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer. Applied Physics Letters, 109(16), 162401. https://doi.org/10.1063/1.4964856
  • Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2006). Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Composites Science and Technology, 66(11–12), 1813–1824. https://doi.org/http://dx.doi.org/10.1016/j.compscitech.2005.10.015
  • IDC. (2017). 3D printing market distribution worldwide in 2016, by use case. Retrieved from https://www.statista.com/statistics/661876/worldwide-3d-printing-market-by-use-case/ Izdebska, J., Thomas, S., Thomas, D. J., & Claypole, T. C. (2016). 18 – 3-D Printing. In Printing on Polymers (pp. 293–306). https://doi.org/10.1016/B978-0-323-37468-2.00018-X
  • Jaratrotkamjorn, R., Khaokong, C., & Tanrattanakul, V. (2012). Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. Journal of Applied Polymer Science, 124(6), 5027–5036. https://doi.org/10.1002/app.35617
  • Jaszkiewicz, A., Bledzki, A. K., & Franciszczak, P. (2013). Improving the mechanical performance of PLA composites with natural, man-made cellulose and glass fibers a comparison to PP counterparts. Polymery, 58(6), 435–442. https://doi.org/dx.doi.org/10.14314/polimery.2013.435
  • Jia, S., Wang, Z., Zhu, Y., Chen, L., & Fu, L. (2015). Composites of poly(lactic) acid/thermoplastic polyurethane/mica with compatibilizer: morphology, miscibility and interphase. RSC Advances, 5(120), 98915–98924. https://doi.org/10.1039/C5RA17938F
  • Karbhari, V. M. (2015). The Nature of E-Glass Fibers. In Rehabilitation of Pipelines Using Fiber-Reinforced Polymer (FRP) Composites. Elsevier. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip&db=edsknv&AN=eds knv.kt00UD3DH2&site=eds-live&authtype=ip,uid
  • Kaynak, C., & Meyva, Y. (2014). Use of maleic anhydride compatibilization to improve toughness and other properties of polylactide blended with thermoplastic elastomers. Polymers for Advanced Technologies, 25(12), 1622–1632. https://doi.org/10.1002/pat.3415
  • Lin, L., Deng, C., Lin, G., & Wang, Y. (2014). Mechanical Properties, Heat Resistance and Flame Retardancy of Glass Fiber-Reinforced PLA-PC Alloys Based on Aluminum Hypophosphite. Polymer-Plastics Technology and Engineering, 53(6), 613–625. https://doi.org/10.1080/03602559.2013.866244
  • Liu, Z.-W., Chou, H.-C., Chen, S.-H., Tsao, C.-T., Chuang, C.-N., Cheng, L.-C., ... Hsieh, K.- H. (2014). Mechanical and thermal properties of thermoplastic polyurethane-toughened polylactide-based nanocomposites. Polymer Composites, 35(9), 1744–1757. https://doi.org/10.1002/pc.22828
  • Liu, Z., Luo, Y., Bai, H., Zhang, Q., & Fu, Q. (2016). Remarkably Enhanced Impact Toughness and Heat Resistance of poly(l-Lactide)/Thermoplastic Polyurethane Blends by Constructing Stereocomplex Crystallites in the Matrix. ACS Sustainable Chemistry & Engineering, 4(1), 111–120. https://doi.org/10.1021/acssuschemeng.5b00816
  • Lu, X., Tang, L., Wang, L. L., Zhao, J. Q., Li, D. D., Wu, Z. M., & Xiao, P. (2016). Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polymer Testing, 54, 90–97. https://doi.org/10.1016/j.polymertesting.2016.06.025
  • Martin, D. J., Osman, A. F., Andriani, Y., & Edwards, G. A. (2012). 11 - Thermoplastic polyurethane (TPU)-based polymer nanocomposites. In F. Gao (Ed.), Advances in Polymer Nanocomposites (pp. 321–350). Woodhead Publishing https://doi.org/https://doi.org/10.1533/9780857096241.2.321
  • Meyva, Y., & Kaynak, C. (2015). Toughening of Polylactide by Bio-Based and Petroleum- Based Thermoplastic Elastomers. International Polymer Processing, 30(5), 593–602. https://doi.org/10.3139/217.3113
  • Miller, A. T., Safranski, D. L., Smith, K. E., Sycks, D. G., Guldberg, R. E., & Gall, K. (2017). Fatigue of injection molded and 3D printed polycarbonate urethane in solution. Polymer, 108, 121–134. https://doi.org/10.1016/j.polymer.2016.11.055
  • Mohammadi, M. S., Ahmed, I., Muja, N., Rudd, C. D., Bureau, M. N., & Nazhat, S. N. (2011). Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites. J Mater Sci Mater Med, 22(12), 2659–2672. https://doi.org/10.1007/s10856-011-4453-x
  • Odent, J., Raquez, J.-M., & Dubois, P. (2015). Highly Toughened Polylactide-Based Materials through Melt-Blending Techniques. In Biodegradable Polyesters (pp. 235–274). Wiley- VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527656950.ch10
  • Oliaei, E., & Kaffashi, B. (2016). Investigation on the properties of poly(l-lactide)/thermoplastic poly(ester urethane)/halloysite nanotube composites prepared based on prediction of halloysite nanotube location by measuring free surface energies. Polymer, 104, 104–114. https://doi.org/10.1016/j.polymer.2016.09.092
  • Oliaei, E., Kaffashi, B., & Davoodi, S. (2016). Investigation of structure and mechanical properties of toughened poly( l -lactide)/thermoplastic poly(ester urethane) blends. Journal of Applied Polymer Science, 133(15), n/a-n/a. https://doi.org/10.1002/app.43104
  • Postiglione, G., Natale, G., Griffini, G., Levi, M., & Turri, S. (2015). Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Composites Part A: Applied Science and Manufacturing, 76, 110–114. https://doi.org/http://doi.org/10.1016/j.compositesa.2015.05.014
  • Sa’ude, N., Ibrahim, M. H. I., Ibrahim, M., & Badrishah, N. S. (2014). Sustainable Natural Bio Composite for FDM Feedstocks. In Machine Design and Manufacturing Engineering III (Vol. 607, pp. 65–69). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMM.607.65
  • Sathishkumar, T., Satheeshkumar, S., & Naveen, J. (2014). Glass fiber-reinforced polymer composites - a review. Journal of Reinforced Plastics and Composites, 33(13), 1258– 1275. https://doi.org/10.1177/0731684414530790
  • Serra, T., Mateos-Timoneda, M. A., Planell, J. A., & Navarro, M. (2013). 3D printed PLA-based scaffolds. Organogenesis, 9(4), 239–244. https://doi.org/10.4161/org.26048
  • Serra, T., Ortiz-Hernandez, M., Engel, E., Planell, J. A., & Navarro, M. (2014). Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Materials Science and Engineering: C, 38, 55–62. https://doi.org/http://doi.org/10.1016/j.msec.2014.01.003
  • Shi, Y.-Y., Du, X.-C., Yang, J.-H., Huang, T., Zhang, N., Wang, Y., ... Zhang, C.-L. (2014). Super Toughened Poly(L-lactide)/Thermoplastic Polyurethane Blends Achieved by Adding Dicumyl Peroxide. Polymer-Plastics Technology and Engineering, 53(13), 1344– 1353. https://doi.org/10.1080/03602559.2014.909470
  • Shi, Y., Zhang, W., Yang, J., Huang, T., Zhang, N., Wang, Y., ... Zhang, C. (2013). Super toughening of the poly(l-lactide)/thermoplastic polyurethane blends by carbon nanotubes. RSC Advances, 3(48), 26271–26282. https://doi.org/10.1039/C3RA43253J
  • Sin, L. T., Rahmat, A. R., Rahman, W. A. W. A., Sin, L. T., Rahmat, A. R., & Rahman, W. A. W. A. (2013). 5 – Mechanical Properties of Poly(lactic Acid). In Polylactic Acid PLA Biopolymer Technology and Applications (pp. 177–219). Elsevier. https://doi.org/10.1016/B978-1-4377-4459-0.00005-6
  • Stickel, J. M., & Nagarajan, M. (2012). Glass Fiber-Reinforced Composites: From Formulation to Application. International Journal of Applied Glass Science, 3(2), 122–136. https://doi.org/10.1111/j.2041-1294.2012.00090.x
  • Thomas, S., & Stephen, R. (Eds.). (2010). Rubber Nanocomposites: Preparation, Properties, and Applications. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470823477
  • Tsuji, H. (2013). Poly(Lactic Acid). In Bio-Based Plastics: Materials and Applications (pp. 171– 239). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118676646.ch8
  • Wallenberger, F. T., Watson, J. C., & Li, H. (2001). Glass Fibers. In ASM Handbook, Vol.21: Composites (pp. 27–34). ASM International.
  • Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials & Design, 102, 276–283. https://doi.org/10.1016/j.matdes.2016.04.045
  • Yıldız, S., Karaağaç, B., & Ozkoc, G. (2014). Thoughening of poly(lactic acid) with silicone rubber. Polymer Engineering & Science, 54(9), 2029–2036. https://doi.org/10.1002/pen.23746
  • Yu, F., & Huang, H.-X. (2015). Simultaneously toughening and reinforcing poly (lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polymer Testing, 45, 107–113.
  • Yu, R., Zhang, L., Feng, Y., Zhang, R., & Zhu, J. (2014). Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese Journal of Polymer Science, 32(8), 1099–1110. https://doi.org/10.1007/s10118-014-1487-9
  • Zhang, C., Wang, W., Huang, Y., Pan, Y., Jiang, L., Dan, Y., ... Peng, Z. (2013). Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Materials & Design, 45, 198–205. https://doi.org/10.1016/j.matdes.2012.09.024
  • Zhang, L., Xiong, Z., Shams, S. S., Yu, R., Huang, J., Zhang, R., & Zhu, J. (2015). Free radical competitions in polylactide/bio-based thermoplastic polyurethane/ free radical initiator ternary blends and their final properties. Polymer, 64, 69–75. https://doi.org/10.1016/j.polymer.2015.03.032
  • Zhao, F., Huang, H.-X., & Zhang, S.-D. (2015). Largely toughening biodegradable poly(lactic acid)/thermoplastic polyurethane blends by adding MDI. Journal of Applied Polymer Science, 132(48), n/a-n/a. https://doi.org/10.1002/app.42511
  • Zhou, Y., Luo, L., Liu, W., Zeng, G., & Chen, Y. (2015). Preparation and Characteristic of PC/PLA/TPU Blends by Reactive Extrusion. Advances in Materials Science and Engineering, 2015.
APA KAYNAK C (2017). PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. , 1 - 87.
Chicago KAYNAK Cevdet PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. (2017): 1 - 87.
MLA KAYNAK Cevdet PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. , 2017, ss.1 - 87.
AMA KAYNAK C PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. . 2017; 1 - 87.
Vancouver KAYNAK C PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. . 2017; 1 - 87.
IEEE KAYNAK C "PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği." , ss.1 - 87, 2017.
ISNAD KAYNAK, Cevdet. "PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği". (2017), 1-87.
APA KAYNAK C (2017). PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. , 1 - 87.
Chicago KAYNAK Cevdet PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. (2017): 1 - 87.
MLA KAYNAK Cevdet PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. , 2017, ss.1 - 87.
AMA KAYNAK C PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. . 2017; 1 - 87.
Vancouver KAYNAK C PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği. . 2017; 1 - 87.
IEEE KAYNAK C "PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği." , ss.1 - 87, 2017.
ISNAD KAYNAK, Cevdet. "PLA / Cam Elyaf Kompozit Filamentlerin 3D Yazıcı / Eklemeli Üretim Tekniğinde Kullanılabilirliği". (2017), 1-87.