0 0

Proje Grubu: EEEAG Sayfa Sayısı: 29 Proje No: 114E636 Proje Bitiş Tarihi: 01.04.2017 Metin Dili: Türkçe İndeks Tarihi: 11-03-2020

Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini

Öz:
Proje gerçekçi büyüklükteki karmasık biyolojik ag yapılarının sistem davranıslarını duragan haldeyken modellenmesi ve model parametrelerinin Bayesci yaklasımlarla tahmin edilmesini kapsamaktadır. Modellemede kopula Gauassin grafiksel modeli (CGGM) kulanılmıs ve parametre tahmini iseöncelikli olarak ters atlamalı Markov zinciri Monte Carlo yöntemiyle yapılmıstır.
Anahtar Kelime: kopula ters atlamalı Markov zinciri Monte Carlo algoritması Kopula Gaussian grafiksel modeli

Konular: Mühendislik, Elektrik ve Elektronik İstatistik ve Olasılık
Erişim Türü: Erişime Açık
  • Barabási, A. L., Oltvai, Z. N. 2004. “Network biology: understanding the cells functional organization”, Nature Reviews Genetics, 5, 101-113.
  • 1- Modelling of biological networks via copulaGaussian graphical model and bayesian inferenceof model parameters (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Bolouri, H. 2008. Computational Modeling of Gene Regulatory Networks. Imperial College Press.
  • 2- Bayesian inference ofdeterministic MAPK/ERK pathway via reversiblejumps Monte Carlo method (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Bower, J. M., Bolouri, H. 2001. Computational Modelling of Genetic and Biochemical Networks (2nd Edition). Massachusetts Institute of Technology.
  • 3- Copulas in Random Forest Algorithm for Modelling Biochemical Networks (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Boys, R. J., Wilkinson, D., Kirkwood, T. B. L. 2008. “Bayesian inference for a discretely observed stochastic kinetic model”, Statistical Computation, 18, 125-135.
  • 4- Inference of biological networks via random forest algorithm (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Carlin, B. P., Chib, S. 1995. Bayesian model choice via Markov chain Monte Carlo methods. Journal of Royal Statistical Society, Series B, 57 (3), 473-484.
  • 5- Reconstruction of biological networks via MARS model basedon various precision matrices (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Defterli, Ö, Purutçuoğlu, V., Weber, G. W. 2014. “Advance mathematical and statistical tools in the dynamic modelling and simulation of gene-enviroment networks”. Modeling, Optimization, Dynamics and bioeconomy. Editor: Zilberman, D., Pinto, A. Springer-Verlag
  • 6- Applications of copulas in deterministic models of biochemical networks (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Dobra, A., Lenkoski, A. 2010. “Copula Gaussian graphical models and their application to modeling functional disability data”, Annals of Applied Statistics, 5 (2A), 969-993.
  • Endy, D., Brent, R. 2001. “Modelling cellular behaviour”, Nature, 409, 391-395.
  • Meinshausen, N., Bühlmann, P. 2006. “High-dimensional graphs and variable selection with the lasso”, The Annals of Statistics, 34 (3), 1436-1462.
  • Friedman J, Hastie T, Tibshirani R. 2008. “Sparse inverse covariance estimation with the garphical lasso”, Biostatistics, 9, 432- 441.
  • Gamerman, D., Lopes, H. F. 2006. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference (2nd Edition). Chapman and Hall/CRC.
  • Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B. 2004. Bayesian Data Analysis. Chapman and Hall/CRC.
  • Genest, C., Favre, A.-C. 2007. “Everthying you always wanted to know aboutcopula modeling but were afraid to ask”, Journal of Hydrologic Engineering, 12, Special Issue: Copulas in Hydrology, 347-368.
  • Gilks, W., Richardson, S., Spiegelhalter, D. 1996. Markov Chain Monre Carlo in Practice. Chapman and Hall/CRC.
  • Gillespie, D. T. 1977. “Exact stochastic simulation of coupled chemical reactions”, Journal of Physical Chemistry , 81 (25), 2340-2361.
  • Golightly, A., Wilkinson, D. 2011. “Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo”, Interface Focus, 1, 807-820.
  • Green, P. J. 1995. “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination”, Biometrika, 82 (4), 711-732.
  • He, Y., Zhang, X., Wang, P., Zhang, L. 2017. “High dimensional Gaussian copula graphical model with FDR control”, Computational Statistics and Data Analysis , 113 , 457-474.
  • Hsieh, C. J., Sustik, M. A., Dhillon, I.S., Ravikumar, P. 2014. “QUIC: Quadratic Approximation for Sparse Inverse Covariance Estimation”, Journal of Machine Learning Research, 15, 2911-2947.
  • Jong, H. D. 2002. “Modelling and simulation of genetic regulatory systems: a literature review”, Journal of Computational Biology, 9 (1), 67-103.
  • Junker, B. H., Schreiber, F. H. 2008. Analysis of Biological Networks. John Wiley and Sons. Khanin, R., Wit, E. 2006. “How scale-free are gene networks?”, Journal of Computational Biology, 13 (3), 810–818.
  • Kolch, W., Calder, M., Gilbert, D. 2005. “When kinases meet mathematics: the systems biology of MAPK signalling”, FEBS Letters, 579, 1891–1895.
  • Li, H. 2008. “Statistical methods for inference of genetic networks and regulatory modules”. Analysis of Micoarray Data, a Network-based Approach. Editors: Emmert-Streib, E., Dehmer, M. Eeinheim: Wiley-VCH Verlag.
  • Liu, H., Han, F., Yuan, M., Lafferty, J., Wasseman, L. 2012. “High dimensional semiparametric gaussian copula grpahical models”, The Annals of Statistics, 40 (4), 2293- 2326
  • Liu, W., 2013. “Gaussian graphical model estimation with false discovery rate control”, The Annals of Statistics, 41 (6), 2948 - 2978.
  • Liu, H., Roeder, K., Wasserman, L. 2010. “Stability approach to regularization selection (stars) for high dimensional graphical models”, Proceedings of the 23rd International Conference on Neural Information Processing Systems, 1432–1440.
  • Maiwald, T., Schneider, A., Busch, H., Sahle, S., Gretz, N., Weiss, T., Kummer, U., Klingmuller, U. 2010. “Combining theoretical analysis and experimental data generation reveals IRF9 as a crucial factor for accelerating interferon induced early antiviral signalling”, FEBS Journal, 277, 4741-4754.
  • Mohammadi, A., Wit, E. 2015. “BDgraph: Bayesian structure learning of graphs in R”, Bayesian Analysis, 10, 109-138.
  • Nelsen, R. B. 2006. An Introduction to Copulas. Springer Science-Business Media, Inc. O'Hagan, A., Forster, J. J. 2004. Kendall's Advanced Theory of Statistics. Edward Arnold Publishing.
  • O’Shea, J. J., Gadina, M., Schreiber, R. D. 2002. “Cytokine signalling in 2002: New suprises in the JAK/STAT pathway”, Cell, 109: S121-S131.
  • Purutçuoğlu, V., Wit, E., 2008. “Bayesian inference for the MAPK/ERK pathway by considering the dependency of the kinetic parameters”, Bayesian Analysis, 3 (4), 851-886.
  • Purutçuoğlu, V. 2012. “Inference of the stochastic MAPK pathway by modified diffusion bridge method”, Central European Journal of Operations Research, doi: 10.1007/s10100- 012-0237-8, 1-15.
  • Purutçuoğlu, V. , Farnoudkia, H. 2017. “Gibbs sampling in inference of the copula Gaussian graphical model adapted to biological networks”, Acta Physica Polonica Seres A, 1-12 (Kabul edildi).
  • Purutçuoğlu, V., Ayyıldız, E., Wit, E. 2017. Comparison of two inference approaches in Gaussian graphical models. Turkish Journal of Biochemistry, 1-9.
  • Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. and Nolan, G. 2005. “Causal protein signaling networks derived from multiparameter single-cell data, Science, 308 (5721), 523– 529.
  • Stranger, B., Nica, A., Forrest, M., Dimas, A., Bird, C., Beazley, C., Ingle, C., Dunning, M., Flicek, P., Montgomery, S., Tavare, S., Deloukas, P., Dermitzakis, E. 2007. “Population genomics of human gene expression”, Nature Genetics 39, 1217–1224.
  • Tibshirani, R. 1996. “Regression shrinkage and selection via the also”, Journal of Royal Statistical Society-B, 58 (1), 267-288.
  • Tibshirani, R., Saunder, M., Rosset, S., Zhu, J., Knight, K. 2005. “Sparsity and smoothness via fused lasso”, Journal of the Royal Statistical Society, 67 (1), 91-108.
  • Trivedi, P., Zimmer, D. M. 2005. “Copula modeling: an introduction for practitioners”, Foundations and Trends in Econometrics, 1 (1), 1-111.
  • Van Kampen, N. G. 1981. Stochastic Processes in Physics and Chemistr. Amsterdam: North- Holland.
  • Vyshemirsky, V., Girolami, M., Gormand, A., Kolch, W. 2006. “A bayesian analysis of the ERK signalling pathway”, DCS Technical Report Series TR-2006-227, Department of Computing Science, University of Glasgow.
  • Walker, S. 2009. “A Gibbs sampling alternative to reversible jump MCMC”, Electronic Journal of Statistics, 1-3.
  • Wawrzyniak, M. M., Kurowicka, D. 2006. Dependence concepts. Delft University of Technology, Delft Institute of Applied Mathematics, Delft, Netherlands.
  • Wang, T., Ren, Z., Ding, Y., Fang, Z., Sun, Z., MacDonald, M. L., Sweet, R. A., Wang, J., Chen, W. 2016. “FastGGM: An efficient algorithm for the inference of Gaussian graphical model in biological networks”, PLOS Computational Biology, 12 (2), 1-16.
  • Wilkinson, D. J. 2006. Stochastic Modelling for Systems Biology. Chapman and Hall/CRC.
  • Whittaker, J. 1990. Graphical Models in Applied Multivariate Statistics. John Wiley and Sons, New York.
  • Xu, D., Yin, C., Wang, S., Xiao, Y. 2013. “JAK-STAT in lipid metabolism of adipocytes”, JAKSTAT. 2(4), e27203.
  • Zhou, S. and Shen, X. 2012. “Spatially adaptive regression splines and accurate knot selection schemes”, Journal of American Statistical Association, 96, 247–259.
  • Zou, H. 2006. “The adaptive lasso and its oracle properties”, Journal of the American Statistical Association, 101, 1418-1429.
  • Zou, H., Hastie, T. 2005. “Regularization and variable selection via the elastic net”, Journal of the Royal Statistical Society, 67 (2), 301-320.
APA PARUTÇUOĞLU GAZİ V, DE LEON A, WİT E, ŞEKER T (2017). Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. , 1 - 29.
Chicago PARUTÇUOĞLU GAZİ Vilda,DE LEON Alexander,WİT Ernst,ŞEKER Tamay Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. (2017): 1 - 29.
MLA PARUTÇUOĞLU GAZİ Vilda,DE LEON Alexander,WİT Ernst,ŞEKER Tamay Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. , 2017, ss.1 - 29.
AMA PARUTÇUOĞLU GAZİ V,DE LEON A,WİT E,ŞEKER T Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. . 2017; 1 - 29.
Vancouver PARUTÇUOĞLU GAZİ V,DE LEON A,WİT E,ŞEKER T Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. . 2017; 1 - 29.
IEEE PARUTÇUOĞLU GAZİ V,DE LEON A,WİT E,ŞEKER T "Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini." , ss.1 - 29, 2017.
ISNAD PARUTÇUOĞLU GAZİ, Vilda vd. "Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini". (2017), 1-29.
APA PARUTÇUOĞLU GAZİ V, DE LEON A, WİT E, ŞEKER T (2017). Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. , 1 - 29.
Chicago PARUTÇUOĞLU GAZİ Vilda,DE LEON Alexander,WİT Ernst,ŞEKER Tamay Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. (2017): 1 - 29.
MLA PARUTÇUOĞLU GAZİ Vilda,DE LEON Alexander,WİT Ernst,ŞEKER Tamay Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. , 2017, ss.1 - 29.
AMA PARUTÇUOĞLU GAZİ V,DE LEON A,WİT E,ŞEKER T Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. . 2017; 1 - 29.
Vancouver PARUTÇUOĞLU GAZİ V,DE LEON A,WİT E,ŞEKER T Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini. . 2017; 1 - 29.
IEEE PARUTÇUOĞLU GAZİ V,DE LEON A,WİT E,ŞEKER T "Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini." , ss.1 - 29, 2017.
ISNAD PARUTÇUOĞLU GAZİ, Vilda vd. "Biyolojik Ağların Gaussian Grafiksel Modellerle Tahmininde Kopulaların Uygulanması ve Parametre Tahmini". (2017), 1-29.