Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi

9 4

Proje Grubu: KBAG Sayfa Sayısı: 143 Proje No: 114R091 Proje Bitiş Tarihi: 01.05.2018 Metin Dili: Türkçe İndeks Tarihi: 16-03-2020

Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi

Öz:
Insan büyüme hormonu (hGH), 22 kDa molekül agırlıgında, 191 amino asitten olusan, beynin ön lobundaki hipofiz bezi tarafından üretilen bir proteindir. Hipofiz bezlerindeki somatotropik hücreler tarafından dogal olarak sentezlenen, kanda bulunan hGH?nin, insan organizmasında eksik, bozuk (defective) üretiminin neden oldugu problemlerin düzeltilmesi için dısarıdan verilme ihtiyacı ?diger hormonlar gibi- bu farmasötik temel maddenin biyoteknolojik prosesle endüstriyel üretimini önemli yapmaktadır. Bu proje kapsamında, gliseraldehit-3-fosfat dehidrojenaz baslatıcısının (promotör) (PGAP) üzerinde bulunan transkripsiyon faktörlerinin baglanma bölgelerini transkripsiyon mühendisligi ile modifiye ederek rekombinant protein (rprotein) üretimini artırmak hedeflenmistir. Pichia pastoris?te en çok kullanılan baslatıcılardan biri olan PGAP, olası transkripsiyon faktörlerinin (TF) baglanma bölgeleri açısından analiz edilmistir. Bulunan TF baglanma bölgeleri silinerek ya da dogal konumlarında duplike edilerek PGAP varyant kütüphanesi olusturulmustur. Aynı zamanda, seçilen TF?ler asırı-ekspres edilerek ya da silinerek, bu faktörlerin r-protein üretimine etkisi arastırılmıstır. Gelistirilen PGAP varyantları altında modifiye yesil floresan proteini üretiminin ekspresyon seviyeleri, dogal PGAP?a kıyasla 0.35-3.10 kat arasında degisim göstermistir. En yüksek ekspresyon seviyelerine ulasan baslatıcı varyantları olan Pro9 (Gal4-benzeri TF baglanma bölgesinin duplike edildigi) ve Pro10 (Rfx1 baglanma bölgesinin silindigi) kontrolü altında ikinci model protein, rekombinant insan büyüme hormonu (rhGH), ekspres edilmis; dogal PGAP?a kıyasla, sırasıyla, 2.4 ila 1.6 kat daha fazla rhGH üretilmistir. Yarı-kesikli biyoreaktör isletim kosullarında, Pro9 kontrolü altında ve Gal4-benzeri TF?nin asırı-ekspres edildigi sus ile rhGH üretiminde birim hücre basına 2.2 kat artıs elde edilmistir. Gelistirilen hibrit yarı-kesikli isletim ile en yüksek rhGH derisimi t = 8 st?te, CrhGH = 611 mg dm-3 elde edilmistir.
Anahtar Kelime: biyoreaktör isletim kosulları ortam tasarımı promotör Pichia pastoris Insan büyüme hormonu

Konular: Kimya, Uygulamalı Kimya, Tıbbi Biyoteknoloji ve Uygulamalı Mikrobiyoloji
Erişim Türü: Erişime Açık
  • Abad, S., Nahalka, J., Winkler, M., Bergler, G., Speight, R., Glieder, A., Nidetzky B. 2011. “High-level expression of Rhodotorula gracilis D-amino acid oxidase in Pichia pastoris”, Biotechnology Letters, 33, 557-563.
  • Akgün, Y. 2018. “Therapeutic protein production and its separation by zeolitic imidazolate framework – 8 adsorbent”, (Master Thesis), Middle East Technical University.
  • Alper, H., Fischer, C., Nevoigt, E., Stephanopoulos, G. 2005. “Tuning genetic control through promoter engineering”, Proceedings of the National Academy of Sciences of the United States of America, 102 (36), 12678-12683.
  • Arya, M., Shergill, I. S., Williamson, M., Gommersall, L., Arya, N., Patel, H. R. H. 2005. “Basic principles of real-time quantitative PCR”, Expert Review of Molecular Diagnostics, 5 (2), 209-219.
  • Ata, Ö., Prielhofer, R., Gasser, B., Mattanovich, D., Çalık, P. 2017. “Transcriptional engineering of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous protein production in Pichia pastoris”, Biotechnology and Bioengineering, 114, 2319-2327.
  • Becker, G. W., Hsiung, H. M. 1986. “Expression, secretion and folding of human growth hormone in Escherichia coli: purification and characterization”, FEBS Letters, 204 (1), 145- 150.
  • Blazeck, J., Garg, R., Reed, B., Alper, H. S. 2012. “Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters”, Biotechnology and Bioengineering, 109, 2884-2895.
  • De Boer, H. A., Comstock, L. J., Vasser, M. 1983. “The tac promoter: a functional hybrid derived from the trp and lac promoters”, Proceedings of the National Academy of Sciences, 80 (1), 21-25.
  • Burke, D., Dawson, D., Stearns, T. 2000. Methods in yeast genetics, Plainview, N.Y.: Cold Spring Harbor Laboratory Press.
  • Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M., Werner, T. 2005. “MatInspector and beyond: Promoter analysis based on transcription factor binding sites”, Bioinformatics, 21, 2933-2942.
  • Cereghino, G. P. L., Cregg, J. M. 1999. “Applications of yeast in biotechnology: protein production and genetic analysis”, Current Opinion in Biotechnology, 10 (5), 422-427.
  • Chang, C. N., Key, M., Bochner, B., Heyneker, H., Gray, G. 1987. “High-level secretion of human growth hormone by Escherichia coli”, Gene, 55 (2), 189-196.
  • Cormack, B. P., Valdivia, R. H., Falkow, S. 1996. “FACS-optimized mutants of the green fluorescent protein (GFP)”, Gene, 173, 33-38.
  • Cos, O., Ramón, R., Montesinos, J. L., Valero, F. 2006. “Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review”, Microbial Cell Factories, 5 (1), 17.
  • Çalık, G., Kocabaş, P., Afşar, H., Çalık, P., Özdamar, T. H. 2016. “Parametric continuous feed stream design to fine-tune fed-batch bioreactor performance: recombinant human growth hormone production in Bacillus subtilis”, Journal of Chemical Technology and Biotechnology, 91, 2740-2750.
  • Çalık, P., Ata, Ö., Güneş, H., Massahi, A., Boy, E., Keskin, A., Öztürk, S., Zerze, G. H., Özdamar, T. H. 2015. “Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters”, Biochemical Engineering Journal, 95, 20-36.
  • Çalık, P., Bayraktar, E., İnankur, B., Soyaslan, E. Ş., Şahin, M., Taşpınar, H., Açık E., Yılmaz, R., Özdamar, T. H. 2010a. “Influence of pH on recombinant human growth hormone production by Pichia pastoris”, Journal of Chemical Technology and Biotechnology, 85 (12), 1628-1635.
  • Çalık, P., Çalık, G., Özdamar, T. H. 1998. “Oxygen transfer effects in serine alkaline protease fermentation by Bacillus licheniformis: use of citric acid as the carbon source”, Enzyme and Microbial Technology, 23 (7-8), 451-461.
  • Çalık, P., Çalık, G., Takaç, S., Özdamar, T. H. 1999. “Metabolic flux analysis for serine alkaline protease fermentation by Bacillus licheniformis in a defined medium: effects of the oxygen transfer rate”, Biotechnology and Bioengineering, 64 (2), 151-167.
  • Çalık, P., Hoxha, B., Çalık, G., Özdamar, T. H. 2018. “Hybrid fed‐batch bioreactor operation design: control of substrate uptake enhances recombinant protein production in high‐cell‐density fermentations”, Journal of Chemical Technology and Biotechnology, doi:10.1002/jctb.5696.
  • Çalık, P., İnankur, B., Soyaslan, E. Ş., Şahin, M., Taşpınar, H., Açık, E., Bayraktar, E. 2010b. “Fermentation and oxygen transfer characteristics in recombinant human growth hormone production by Pichia pastoris in sorbitol batch and methanol fed‐batch operation”, Journal of Chemical Technology and Biotechnology, 85 (2), 226-233.
  • Çalık, P., Orman, M. A., Çelik, E., Halloran, M., Çalık, G., Özdamar, T. H. 2008. “Expression system for synthesis and purification of recombinant human growth hormone in Pichia pastoris and structural analysis by MALDI-ToF mass spectrometry”, Biotechnology Progress, 24 (1), 221-226.
  • Çalık, P., Özdamar, T. H. 1999. “Mass flux balance-based model and metabolic pathway engineering analysis for serine alkaline protease synthesis by Bacillus licheniformis“, Enzyme and Microbial Technology, 24 (10), 621-635.
  • Çalık, P., Şahin, M., Taşpınar, H., Soyaslan, E. Ş., İnankur, B. 2011. “Dynamic flux balance analysis for pharmaceutical protein production by Pichia pastoris: Human growth hormone”, Enzyme and Microbial Technology, 48 (3), 209-216.
  • Ecamilla-Trevino, L. L., Viader-Salvadó, J. M., Barrera-Saldaña, H. A., Guerrero-Olazarán, M. 2000. “Biosynthesis and secretion of recombinant human growth hormone in Pichia pastoris”, Biotechnology Letters, 22 (2), 109-114.
  • Eurwilaichitr, L., Roytrakul, S., Suprasongsin, C., Manitchotpisit, P., Panyim, S. 2002. “Glutamic acid and alanine spacer is not necessary for removal of MFα-1 signal sequence fused to the human growth hormone produced from Pichia pastoris”, World Journal of Microbiology and Biotechnology, 18 (6), 493-498.
  • Ferreira, A. R., Ataíde, F., Von Stosch, M., Dias, J. M. L., Clemente, J. J., Cunha, A. E., Oliveira, R. 2012. “Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv)”, Bioprocess and Biosystems Engineering, 35(9), 1603-1614.
  • Franchi, E., Maisano, F., Testori, S. A., Galli, G., Toma, S., Parente, L., de Ferra, F., Grandi, G. 1991. “A new human growth hormone production process using a recombinant Bacillus subtilis strain”, Journal of Biotechnology, 18 (1-2), 41-54.
  • Gancedo, J. M. 1998. “Yeast carbon catabolite repression”, Microbiology and Molecular Biology Reviews, 62 (2), 334-361.
  • Goeddel, D. V., Heyneker, H. L., Hozumi, T., Arentzen, R., Itakura, K., Yansura, D. G., Ross, M. J., Miozzari, G., Crea, R., Seeburg, P. H. 1979. “Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone”, Nature, 281 (5732), 544.
  • Goodrick, J. C., Xu, M., Finnegan, R., Schilling, B. M., Schiavi, S., Hoppe, H., Wan, N. C., Corp, G., Square, O. K. 2001. “High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system”, Biotechhnology and Bioengineering, 74 (6), 492-497.
  • Gray, G. L., Baldridge, J. S., McKeown, K. S., Heyneker, H. L., Chang, C. N. 1985. “Periplasmic production of correctly processed human growth hormone in Escherichia coli: natural and bacterial signal sequences are interchangeable”, Gene, 39 (2), 247-254.
  • Guarente, L., Hoar, E. 1984. “Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the “TATA box””, Proceedings of the National Academy of Sciences of the United States of America, 8, 7860-7864.
  • Guarente, L., Lalonde, B., Gifford, P., Alani, E. 1984. “Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae”, Cell, 36 503-511.
  • Güneş, H., Çalık, P. 2016. “Oxygen transfer as a tool for fine-tuning recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter”, Bioprocess and Biosystems Engineering, 39 (7), 1061-1072.
  • Hartner, F. S., Ruth, C., Langenegger, D., Johnson, S. N., Hyka, P., Lin-Cereghino, G. P., Lin-Cereghino, J., Kovar, K., Cregg, J. M., Glieder, A. 2008. “Promoter library designed for fine-tuned gene expression in Pichia pastoris“, Nucleic Acids Research, 36, e76.
  • Heim, R., Tsien, R. Y. 1996. “Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer”, Current Biology, 6, 178- 182.
  • Heiss, S., Puxbaum, V., Gruber, C., Altmann, F., Mattanovich, D., Gasser, B. 2015. “Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization”, Microbiology, 161, 1356-1368.
  • Hsiung, H. M., Mayne, N. G., Becker, G. W. 1986. “High-level expression, efficient secretion and folding of human growth hormone in Escherichia coli“, Nature Biotechnology, 4 (11),
  • 991.Ikehara, M., Ohtsuka, E., Tokunaga, T., Taniyama, Y., Iwai, S., Kitano, K., Miyamoto, S., Ohgi, T., Sakuragawa, Y., Fujiyama, K. 1984. “Synthesis of a gene for human growth hormone and its expression in Escherichia coli”, Proceedings of the National Academy of Sciences of the United States of America, 81 (19), 5956-5960.
  • Invitrogen 2010, EasySelect™ Pichia Expression Kit For Expression of Recombinant Proteins Using pPICZ and PPICZα in Pichia pastoris
  • Invitrogen user manual 2010, “pGAPZA,B,C and pGAPZαA,B,C Pichia expression vectors for constitutive expression and purification of recombinant proteins”.
  • İleri, N., Çalık, P. 2006. “Effects of pH strategy on endo‐and exo‐metabolome profiles and sodium potassium hydrogen ports of β‐lactamase‐producing Bacillus licheniformis”, Biotechnology Progress, 22 (2), 411-419.
  • Jeppsson, M., Johansson, B., Jensen, P. R., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F. 2003. “The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains”, Yeast, 20,1263-1272.
  • Johnston, M., Flick, J. S., Pexton, T. 1994. “Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae”, Molecular and Cellular Biology, 14, 3834-3841.
  • Kajino, T., Saito, Y., Asami, O., Yamada, Y., Hirai, M., Udata, S. 1997. “Extracellular production of an intact and biologically active human growth hormone by the Bacillus brevis system”, Journal of Industrial Microbiology and Biotechnology, 19 (4), 227-231.
  • Kato, C., Kobayashi, T., Kudo, T., Furusato, T., Murakami, Y., Tanaka, T., Baba, H., Oishi, T., Ohtsuka, E., Ikehara, M., Kato, H., Moriyama, S., Horikoshi, K., Yanagida, T. 1987. “Construction of an excretion vector and extracellular production of human growth hormone from Escherichia coli”, Gene, 54 (2), 197-202.
  • Kottmeier, K., Günther, TJ., Weber, J., Kurtz, S., Ostermann, K., Rödel, G., Bley, T. 2012. “Constitutive expression of hydrophobin HFB1 from Trichoderma reesei in Pichia pastoris and its pre-purification by foam separation during cultivation”, Engineering in Life Sciences 12, 162-170.
  • Lehninger, A. L. 1979. Biochemistry: the molecular basis of cell structure and function (2nd Eddition). New York: Worth Publishers.
  • Lehninger, A. L., Nelson, D. L., Cox, M. M. 1993. Principles of biochemistry (Vol.2, 241-242). New York: Worth Publishers,.
  • Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S, Cregg JM. 2006. “Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris”, Molecular and Cellular Biology, 26, 883-97.
  • Massahi, A., Çalık, P. 2016. “Endogenous signal peptides in recombinant protein production by Pichia pastoris: From in-silico analysis to fermentation”, Journal of Theoretical Biology, 408, 22-33.
  • Massahi, A., Çalık, P. 2018. “Naturally occurring novel promoters around pyruvate branchpoint for recombinant protein production in Pichia pastoris (Komagataella phaffii): Pyruvate decarboxylase- and pyruvate kinase- promoters”, Biochemical Engineering Journal, 138, 110-120.
  • Nakayama, A., Ando, K., Kawamura, K., Mita, I., Fukazawa, K., Hori, M., Honjo, Y, Furutani, Y. 1988. “Efficient secretion of the authentic mature human growth hormone by Bacillus subtilis”, Journal of Biotechnology, 8 (2), 123-134.
  • Nevoigt, E., Kohnke, J., Fischer, C. R., Alper, H., Stahl, U., Stephanopoulos, G. 2006. “Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae”, Applied Environment Microbiology, 72, 5266-5273.
  • Orman, M. A., Çalık, P., Özdamar, T. H. 2009. “The influence of carbon sources on recombinant‐human‐growth‐hormone production by Pichia pastoris is dependent on phenotype: a comparison of Muts and Mut+ strains”, Biotechnology and Applied Biochemistry, 52 (3), 245-255.
  • Ormö, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., Remington, S. J. 1996. “Crystal structure of the Aequorea victoria green fluorescent protein”, Science, 273 (5280), 1392- 1395.
  • Özdamar, T. H., Şentürk, B., Yilmaz, Ö. D., Çalık, G., Çelik, E., Çalık, P. 2009. “Expression system for recombinant human growth hormone production from Bacillus subtilis”, Biotechnology Progress, 25 (1), 75-84.
  • Pepeliaev, S., Krahulec, J., Černý, Z., Jílková, J., Tlustá, M., Dostálová, J. 2011. “High level expression of human enteropeptidase light chain in Pichia pastoris”, Journal of Biotechnology, 156, 67-75.
  • Polupanov, A. S., Nazarko, V. Y., Sibirny, A. A. 2012. “Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression” The International Journal of Biochemistry Cell Biology, 44 (11), 1906-1918.
  • Potvin, G., Ahmad, A., Zhang, Z. 2012. “Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review”. Biochemical Engineering Journal 64, 91-105.
  • Prielhofer, R., Cartwright, S. P., Graf, A. B., Valli, M., Bill, R. M., Mattanovich, D., Gasser, B. 2015. “Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational level”, BMC Genomics 16, 167.
  • Prielhofer, R., Maurer, M., Klein, J., Wenger, J., Kiziak, C., Gasser, B., Mattanovich, D. 2013. “Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris”, Microbial Cell Factory 12, 5.
  • Puxbaum, V., Gasser B., Mattanovich, D. 2016. “The bud tip is the cellular hot spot of protein secretion in yeasts”, Applied Microbiology and Biotechnology 100, 8159-8168.
  • Qin, X., Qian, J., Xiao, C., Zhuang, Y., Zhang, S., Chu, J. 2011a. “Reliable high-throughput approach for screening of engineered constitutive promoters in the yeast Pichia pastoris”, Letter Applied Microbiology, 52, 634-41.
  • Qin, X., Qian, J., Yao, G., Zhuang, Y., Zhang, S., Chu, J. 2011b. “GAP promoter library for fine-tuning of gene expression in Pichia pastoris”, Applied Environment Microbiology 77, 3600-3608.
  • Rebnegger, C., Graf, A. B., Valli, M., Steiger, M. G., Gasser, B., Maurer, M., Mattanovich, D. 2014. “In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response”, Biotechnology Journal, 9, 511-525.
  • Rossanese, O. W., Soderholm, J., Bevis, B. J., Sears, I. B., O'connor, J., Williamson, E. K., Glick, B. S. 1999. “Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae”, The Journal of Cell Biology, 145 (1), 69-81
  • Roth, S., Kumme, J., Schüller, H. J. 2004. “Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae”, Current Genetics, 45, 121-128.
  • Ruth, C., Zuellig, T., Mellitzer, A., Weis, R., Looser, V., Kovar, K., Glieder, A. 2010. “Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris”, System and Synthetic Biology, 4, 181-191.
  • Sakai, Y., Koller, A., Rangell, L. K., Keller, G. A., Subramani, S. 1998. “Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates”, The Journal of Cell Biology, 141 (3), 625-636.
  • Sambrook, J., Russell, D.W. 2001. Molecular cloning: a library manual (3rd Edition). New York: Cold Spring Harbor Library Press.
  • Schneider, C. A., Rasband, W. S., Eliceiri, K. W. 2012. “NIH Image to ImageJ: 25 years of image analysis”, Nature Methods, 9 (7), 671.
  • Schüller, H. J. 2003. “Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae”, Current Genetics, 43, 139-160.
  • Shin, N. K., Kim, D. Y., Shin, C. S., Hong, M. S., Lee, J., Shin, H. C. 1998. “High-level production of human growth hormone in Escherichia coli by a simple recombinant process”, Journal of biotechnology, 62 (2), 143-151.
  • Sjöblom, M., Lindberg, L., Holgersson, J., Rova, U. 2012. “Secretion and expression dynamics of a GFP-tagged mucin-type fusion protein in high cell density Pichia pastoris bioreactor cultivations”, Advances in Bioscience and Biotechnology, 03, 238-248.
  • Stadlmayr, G., Benakovitsch, K., Gasser, B., Mattanovich, D., Sauer, M. 2010. “Genomescale analysis of library sorting (GALibSo): Isolation of secretion enhancing factors for recombinant protein production in Pichia pastoris”, Biotechnology and Bioengineering 105, 543-555.
  • Tabandeh, F., Shojaosadati, S. A., Zomorodipour, A., Khodabandeh, M., Sanati, M. H., & Yakhchali, B. 2004. “Heat-induced production of human growth hormone by high cell density cultivation of recombinant Escherichia coli”, Biotechnology letters, 26 (3), 245-250.
  • Vassileva, A., Chugh, D. A., Swaminathan, S., Khanna, N. 2001. “Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter”, Journal of Biotechnology, 88, 21–35.
  • Vogl, T., Glieder, A. 2013. “Regulation of Pichia pastoris promoters and its consequences for protein production”, New Biotechnology, 30, 385-404.
  • Vogl, T., Ruth, C., Pitzer, J., Kickenweiz, T., Glieder, A. 2014. “Synthetic core promoters for Pichia pastoris”, ACS Synthetic Biology, 3, 188-191.
  • Wang, J., Wang, X., Shi, L., Qi, F., Zhang, P., Zhang, Y., Zhou, X., Song, Z., Cai, M. 2017. “Methanol-Independent Protein Expression by AOX1 Promoter with trans-Acting Elements Engineering and Glucose-Glycerol-Shift Induction in Pichia pastoris”, Scientific Reports, 7, 41850. Wang, X., Cai, M., Shi, L., Wang, Q., Zhu, J., Wang, J., Zhou, M., Zhou, X., Zhang, Y. 2016a. “PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris”, Biotechnology Letters, 38, 291-298.
  • Wang, X., Wang, Q., Wang, J., Bai, P., Shi, L., Shen, W., Zhou, M., Xiangshan, Z., Zhang, Y., Cai, M. 2016b. “Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 ( AOX1 ) Promoter in Pichia”, Journal of Biological Chemistry 291, 6245-6261.
  • Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V., Cregg, JM. 1997. “Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter”, Gene 186, 37-44.
  • Weinhandl, K., Winkler, M., Glieder, A., Camattari, A. 2014. “Carbon source dependent promoters in yeasts”, Microbial Cell Factories 13, 5.
  • Wu, J. M., Lin, J. C., Chieng, L. L., Lee, C. K., Hsu, T. A. 2003a. “Combined use of GAP and AOX1 promoter to enhance the expression of human granulocyte-macrophage colonystimulating factor in Pichia pastoris”, Enzyme and Microbial Technology, 33, 453-459.
  • Wu, J. M., Chieng, L. L., Hsu, T. A., Lee, C. K. 2003b. “Sequential expression of recombinant proteins and their separate recovery from a Pichia pastoris cultivation”, Biochemical Engineering Journal, 16, 9-16.
  • Yamakawa, M., Sugisaki, K., Morimoto, M., Tanaka, M., Yamamoto, M., Ichikawa, T., Nakashima, K. 1989. “Effects of gene dosage on the expression of human growth hormone cDNA in Escherichia coli”, Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1009 (2), 156-160.
  • Zhang, A. L., Zhang, T. Y., Luo, J. X., Chen, S. C., Guan, W. J., Fu, C. Y., Li, H. L. 2007. “Constitutive expression of human angiostatin in Pichia pastoris by high-density cell culture”, Journal of Industrial Microbiology and Biotechnology, 34 (2), 117-122.
  • Zhang, A. L., Luo, J. X., Zhang, T. Y., Pan, Y. W., Tan, Y. H., Fu, C. Y., Tu, F. 2009. “Recent advances on the GAP promoter derived expression system of Pichia pastoris”, Molecular Biology Reports, 36, 1611–9.
  • Zhang, P., Zhang, W., Zhou, X., Bai, P., Cregg, J. M., & Zhang, Y. 2010. “Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy”, Applied and environmental microbiology, 76 (18), 6108-6118.
APA ÇALIK P (2018). Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. , 1 - 143.
Chicago ÇALIK Pınar Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. (2018): 1 - 143.
MLA ÇALIK Pınar Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. , 2018, ss.1 - 143.
AMA ÇALIK P Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. . 2018; 1 - 143.
Vancouver ÇALIK P Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. . 2018; 1 - 143.
IEEE ÇALIK P "Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi." , ss.1 - 143, 2018.
ISNAD ÇALIK, Pınar. "Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi". (2018), 1-143.
APA ÇALIK P (2018). Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. , 1 - 143.
Chicago ÇALIK Pınar Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. (2018): 1 - 143.
MLA ÇALIK Pınar Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. , 2018, ss.1 - 143.
AMA ÇALIK P Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. . 2018; 1 - 143.
Vancouver ÇALIK P Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi. . 2018; 1 - 143.
IEEE ÇALIK P "Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi." , ss.1 - 143, 2018.
ISNAD ÇALIK, Pınar. "Metabolik Mühendislik ve Reaksiyon Mühendisigi Prensipleriyle Insan Büyüme Hormonu Üretimi Için Yeni Biyoteknolojik Proses Gelistirilmesi". (2018), 1-143.