Abdullah ÖZTÜRK
(Orta Doğu Teknik Üniversitesi, Ankara, Türkiye)
Jongee PARK
(Adres Yazılmamış)
Göksel DURKAYA
(adres yazılmamıs)
Proje Grubu: TÜBİTAK MAG ProjeSayfa Sayısı: 0Proje No: 216M391Proje Bitiş Tarihi: 01.12.2018Türkçe

0 0
Perovskit Katı Hal Elektrolit Esaslı Boya Duyarlı Güneş Enerjisi Pili
Bu projede, optimize edilmiş TiO2 çalışma elektrotu, perovskit katı hal elektroliti ve karbon nanotüp veya grafen/polimer kompozit karşıt elektrotu?nun kullanılması suretiyle, katı hal boya duyarlı güneş pilli (DSSC)?nin kararlılığının arttırılması amaçlanmıştır. Proje Avrupa birliğince açılan ?Kaynaklar ve sürdürebilirlik? KONNECT çağrısına uygun olarak sürdürülmüştür. DSSC?lerin enerji dönüşüm verimlilikleri TiO2 içerikli fotoanotun (çalışma elektrotunun) morfolojik yapısıyla yakından ilgilidir. Projede Türk ekibi katı hal DSSC?lerin çalışma elektrodunun yapımında kullanmak üzere TiO2 katmanının optimize edilmesine yönelik Ar-Ge çalışmalarını yapmıştır. Bu doğrultuda değişik fazlara (anataz, rutil, brukit ve bunların karışımları) ve morfolojiye (1, 2, ve 3 boyutlu) sahip TiO2 tozları hidrotermal süreçle nano boyutta sentezlenmiştir. Sentezlenen tozlardan TiO2 pastaları oluşturulup Kore ekibine gönderilmiştir. Kore ekibi diğer ekiplerin hazırladığı elektrotları kullanarak, elektrolit ve perovskit malzemeleri hazırlamış, katı hal DSSC?leri imal etmiş ve imal ettiği perovskit DSSC?lerin enerji dönüşüm verimliliklerini ölçmüştür. Bu çalışmada, TiO2 nanoyapıları asidik (HNO3) ve bazik (NaOH) katalizör destekli hidrotermal yöntemle sentezlenmiştir. Bazik katalizör destekli sentezde, bir boyutlu (1D) TiO2 nanoyapıları elde etmek için prekürsör olarak ticari anataz tozu ve amorf toz kullanılmıştır. NaOH molaritesi ve sentez sıcaklığı sabit tutulmuş fakat sentez süresi sistematik olarak arttırılmıştır. Ürünler XRD, FESEM ve HRTEM analizleri kullanılarak karakterize edilmiştir. Asidik katalizör destekli sentezde, TiO2 nanoyapıları asit konsantrasyonu (1, 3 ve 8 M), sentez sıcaklığı (110, 140 ve 180 oC) ve sentez süresi (1, 3 ve 6 saat) değiştirilerek sentezlenmiştir. Ürünler XRD, FESEM ve HRTEM analizleri kullanılarak karakterize edilmiştir. Elde edilen TiO2 nanoyapıları için bir oluşum mekanizması önerilmiştir. DSSC'nin fotoanotunu yapmak için kristal yapısı ve morfolojileri farklı olan beş nano toz seçilmiştir. Tozlardan fotoanot yapmak için iki farklı macun oluşturma yöntemiyle macunlar hazırlanmıştır. Her macun tek ve çift katmanlı olarak uygulanmıştır. Fotoanotlar profilometre, UV-Vis fotospektroskopi, FESEM, XRD ve HRTEM analizleri kullanılarak karakterize edilmiştir. Perovskit katı hal DSSC?yi oluşturmak için Methylammonium perovskit sıvı hazırlanmıştır. Oluşturulan DSSC?lerin değişik spin kaplama hızlarında ve ısıl işlem sıcaklıklarında enerji dönüşüm perfomansları belirlenmiştir. Tek TiO2 katman üzerinde 1500 dev/dak?da kaplanmış perovskit DSSC?nin verimliği %7,36 olarak ölçülmüştür. DSSC?nin verimliliğini artırmak için perovskit içine 0,1 NH4I katkısı yapılmıştır. Bu surette verimlik %9,13?e kadar artmıştır. Katı hal DSSC?nin verimliğini arttırmak için el baskı ile oluşturulan ilk katman üzerine spin kaplama ile mezogözenekli ikinci TiO2 katmanı yapılmıştır. Bu surette oluşturulan katı hal DSSC?nin verimliliği %10,05 olarak belirlenmiştir. Çift TiO2 katmanlarıyla beraber NH4I katkılı perovskit kullanılıp 100 oC?de ısıl ışlem yapılmış DSSC?nin enerji dönüşüm verimliliği %10,3 olarak ölçülmüştür.
  • Adachi, M., Sakamoto, M., Jiu, J., Ogata, Y., Isoda, S. 2006. “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, Journal of Physical Chemistry B, 110, 13872-13880.
  • Amornkitbamrung, V. 2015. “A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste”, Scientific Reports, 5, 15230-15241.
  • Baglio, V., Girolamo, M., Antonucci, V., Arico, A. S. 2011. “Influence of TiO 2 film thickness on the electrochemical behaviour of dye-sensitized solar cells”, International Journal of Electrochemical Science, 6, 3375-3384.
  • Barbe, J., Arendse, F., Comte, P., Jirousek, M., Lanzmann, F., Shklover, V., Gratzel, M. 1997. “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, Journal of the American Ceramic Society, 80, 3157-3171.
  • Ball, J. M., Lee, M. M., Hey, A., Snaith, H. J. 2013. “Low-temperature processed meso- superstructured to thin-film perovskite solar cells”, Energy and Environmental Science, 6, 1739-1743.
  • Basu, K., Benetti, D., Zhao, H., Jin, L., Vetrone, F., Vomiero, A., Rosei, F. 2016. "Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO 2 photoanodes", Scientific Reports, 23312-23321.
  • Bavykin, D. V., Friedrich, J. M., Walsh, F. C. 2006. “Protonated titanates and TiO 2 nanostructured materials: Synthesis, properties, and applications”, Advanced Materials, 24, 2807-2824.
  • Bavykin, D. V., Walsh, F. C. 2010. “Titanate and Titania Nanotubes: Synthesis, Properties and Applications”, Cambridge: Royal Society of Chemisty.
  • Bellat, V., Chassagnon, R., Heintz, O., Saviot, L., Vandroux, D., Millot, N. 2015. “A multi-step mechanism and integrity of titanate nanoribbons”, Dalton Transactions, 44, 1150-1160.
  • Bergquist, J., Sun, L., Sundström, V., Akermark, B., Polívka, T. 2007. “Synthesis and electron transfer studies of ruthenium-terpyridine -based dyes attached to nanostructured TiO 2 ”, Inorganic Chemistry, 46, p. 638-651.
  • Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., Gratzel, M. 2013. “Sequential deposition as a route to high-performance perovskite- sensitized solar cells”, Nature, 499, 316-319.
  • Chen, H.Y., Kuang, D.B., Su, C.Y. 2012. “Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells”, Journal of Materials Chemistry, 20, 15475-15489.
  • Chen, H.Y., Zhang, T.L., Fan, J., Kuang, D.B., Su, C.Y. 2013. “Electrospun hierarchical TiO 2 nanorods with high porosity for efficient dye-sensitized solar cells”, ACS Applied Materials & Interfaces, 5, 9205-9211.
  • Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. S., Wang, H. H., Liu, Y., Li, G., Yang, Y. 2014. “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, Journal of the American Chemical Society, 136, 622-625.
  • Chen, Y., Chen, Z. 2016. "Three-dimensional ordered TiO 2 hollow spheres as scattering layer in dye-sensitized solar cells", Applied Physics A,122, 192-195.
  • Chu, L., Qin Z., Yang, J., Li, X. 2015. "Anatase TiO 2 nanoparticles with exposed {001} facets for efficient dye-sensitized solar cells", Scientific Reports, 12143-12152.
  • Conings, B., Baeten, L., Dobbelaere, C. D., D’Haen, J., Manca, J., Boyen, H. G. 2014. “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach”, Advanced Materials, 26, 2041-2046.
  • Desilvestro, J., Grätzel, M., Kavan, L., Moser, J., Augustynski, J. 1985. “Highly efficient sensitization of titanium dioxide”, Journal of the American Chemical Society, 107, 2988-2990.
  • Di Paola, A., Bellardita, M., Palmisano, L. 2013. "Brookite, the least known TiO 2 photocatalyst", Catalysts, 3, 36-73.
  • Duan, Y., Fu, N., Zhang, Q., Fang, Y., Zhou, X., Lin, Y. 2013. "Influence of Sn source on the performance of dye-sensitized solar cells based on Sn-doped TiO 2 photoanodes: A strategy for choosing an appropriate doping source", Electrochimica Acta,107, 473-480.
  • Eperon, G. E., Burlakov, V. M., Goriel A., Snaith, H. J. 2014. “Neutral color semitransparent microstructured perovskite solar cells”, ACS NANO, 8, 591-598.
  • Frost, J. M., Butler, K. T., Brivio, F., Hendon, C. H., van Schilfgaarde, M., Walsh, A. 2014. “Atomistic origins of high-performance in hybrid halide perovskite solar cells”, Nano Letters, 14, 2584-2590.
  • Giacomoa, F. D., Razzaa, S., Matteoccia, F., D'Epifaniob, A., Licocciab, S., Browna, T. M., Carlo A. D. 2014. “High efficiency CH 3 NH 3 PbI (3−x) Cl x perovskite solar cells with poly(3- hexylthiophene) hole transport layer”, Journal of Power Sources, 251, 152-156.
  • Goldberg, S., Criscenti, L. J., Turner, D. R., Davis, J. A., Cantrell, K. J. 2007. “Adsorption– desorption processes in subsurface reactive transport modeling”, Vadose Zone Journal, 6, 407-435.
  • Gong, J., Liang, J., Sumathy, K. 2012. “Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials”, Renewable and Sustainable Energy Reviews, 16, 5848-5860.
  • Gratzel, M. 2001. “Photoelectrochemical cells”, Nature, 414, 338-344.
  • Gratzel, M. 2003. "Dye sensitized solar cells", Journal of Photochemistry & Photobiology C, 4, 145-153.
  • Gratzel, M. 2004. “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 3-14.
  • Hagfeldt, A., Grätzel, M. 2000. “Molecular photovoltaics”, Accounts of Chemical Research, 33, 269-277.
  • Gratzel, M. 2005. "Solar energy conversion by dye-sensitized photovoltaic cells", Inorganic Chemistry, 44, 6841-6851.
  • Gupta, S. M., Tripathi M. 2011. "A review of TiO 2 nanoparticles", Chinese Science Bulletin, 56, 1639-1657.
  • Günes, S., Neugebauer, H., Sariciftci, N. S. 2007. “Conjugated polymer-based organic solar cells”, Chemical Reviews, 107, 1324-1338.
  • Hodes, G. 2013. “Perovskite-based solar cells”, Science, 342, 317-318.
  • Huo, J., Hu, Y., Jiang, H., Huang, W., Li, Y., Shao, W., Li, C. 2013. “Mixed solvents assisted flame spray pyrolysis synthesis of TiO 2 hierarchically porous hollow spheres for dye- sensitized solar cells”, Industrial and Engineering Chemistry Research, 53, 11029-11035.
  • Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., Park, N. G. 2011. “6.5% efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale, 3, 4088-4093.
  • Ito, S., Chen, P., Comte, P., Nazeeruddin, M. K., Liska, P., Péchy, P., Grätzel, M. 2007. “Fabrication of screen-printing pastes from TiO 2 powders for dye-sensitised solar cells”, Progress in Photovoltaics: Research and Applications,15, 603-612.
  • Jadhav, N. A., Singh, P. K., Rhee, H. W., Pandey, S. P., Bhattacharya, B. 2014. "Effect of structure texture and morphology modulation on efficiency of dye sensitized solar cells", International Journal of Electrochemical Science, 9, 5377-5388.
  • Jeng, J. Y., Chiang, Y. F., Lee, M. H., Peng, S. R., Guo, T. F., Chen, P., Wen, T. C. 2013. “CH 3 NH 3 PbI 3 perovskite/ fullerene planar-heterojunction hybrid solar cells”, Advanced Materials, 25, 3727-3732.
  • Kakiage, K., Aoyama, Y., Yano T., Oyaf, K., Fujisawa, J.I., Hanaya, M. 2015. "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes", Chemical Communications, 51, 15894-15897.
  • Kao, M. C., Chen, H. Z., Young, S. L., Kung, C. Y., Lin, C. C. 2009. “The effects of the thickness of TiO 2 films on the performance of dye-sensitized solar cells”, Thin Solid Films, 517, 5096-5099.
  • Karthik, K., Pandian, S. K., Jaya, N. V. 2010. “Effect of nickel doping on structural, optical and electrical properties of TiO 2 nanoparticles by sol–gel method”, Applied Surface Science, 256, 6829-6833.
  • Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K. 1998. “Formation of titanium oxide nanotube”, Langmuir, 14, 3160-3163.
  • Katoh, R., Huijser, A., Hara, K., Savenije, T. J., Siebbeles, L. D. A. 2007. “Effect of the particle size on the electron injection efficiency in dye-sensitized nanocrystalline TiO 2 films studied by time-resolved microwave conductivity (TRMC) measurements”, Journal of Physical Chemistry C, 111, 10741-10746.
  • Ko, K. H., Lee, Y. C., Jung, Y. J. 2005. "Enhanced efficiency of dye-sensitized TiO 2 solar cells (DSSC) by doping of metal ions", Journal of Colloid Interface Science, 283, 482-487.
  • Ko, S. H., Grigoropoulos, C. P. 2014. Hierarchical Nanostructures for Energy Devices. Cambridge: Royal Society of Chemistry.
  • Koh, T. M., Fu, K., Fang, Y., Chen, S., Sum, T. C., Mathews, N., Mhaisalkar, S. G., Boix, P. P., Baikie, T. 2014. “Formamidinium-containing metal-halide: An alternative material for near- IR absorption perovskite solar cells”, The Journal of Physical Chemistry C, 118, 16458- 16462.
  • Kurtoglu, M. 2011. "Effect of doping on the photocatalytic, electronic and the mechanical properties of sol-gel titanium dioxide films", Ph.D. Thesis, Drexel University.
  • Lagopati, N., Tsilibary, E., Falaras, P., Papazafiri, P., Pavlatou, E. A., Kotsopoulou, E., Kitsiou P. 2014. “Effect of nanostructured TiO 2 crystal phase on photoinduced apoptosis of breast cancer epithelial cells”, International Journal of Nanomedicine, 9, 3219 – 3230.
  • Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., Snaith, H. J. 2012. “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science, 338, 643-647.
  • Lee, C. H., Rhee, S. W., Choi, H. W. 2012. "Preparation of TiO 2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells", Nanoscale Research Letters, 7, 48-52.
  • Li, W., Ionescu E., Roedela R., Gurloa, A. 2013. “Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors?”, Journal of Materials Chemistry A, 1, 12239-12245.
  • Li, Q., Chen, X., Zhao, J., Qiu, L., Zhang, Y., Sun, B., Yan, F. 2012. “Organic ionic plastic crystal-based electrolytes for solid-state dye sensitized solar cells”, Journal Materials Chemistry, 22, 6674-6679.
  • Li, Y., Wang, H., Feng, Q., Zhou, G., Wang, Z.S. 2013. “Reduced graphene oxide–TaON composite as a high-performance counter electrode for Co(bpy) 33+/2+ -mediated dye-sensitized solar cells”, ACS Applied Materials and Interfaces, 16, 8217-8224.
  • Liao, J. Y., Lei, B. X., Kuang, D. B., Su, C. Y. 2011. "Tri-functional hierarchical TiO 2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells", Energy & Environmental Science, 4, 4079-4085.
  • Lim, S. P., Pandikumar, A., Lim, H. N., Ramaraj, R., Huang, N. M. 2015. "Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N, S-Co-Doped-TiO 2 photoanode", Scientific Reports, 5, 11922-11935.
  • Lin, J., Heo, Y. U., Nattestad, A., Sun, Z., Wang, L., Kim, J. H., Dou, S. X. 2014. "3D hierarchical rutile TiO 2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency", Scientific Reports, 4, 5769-5776.
  • Lin, Z., Wang, J. 2014. Low-cost Nanomaterials: Toward Greener and More Efficient Energy Applications. Springer.
  • Linsebigler, L., Lu, G., Yates, J. T. 1995. "Photocatalysis of TiO 2 surface: principles, mechanisms, and selected results", Chemical Reviews, 95, 735-758.
  • Liu, M., Johnston, M. B., Snaith, H. J. 2013. “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, 501, 395-398.
  • Liu, B., Aydil, E. S., 2009."Growth of oriented single-crystalline rutile TiO 2 nanorods on transparent conducting substrates for dye-sensitized solar cells", Journal of the American Chemical Society, 135, 3985-3991.
  • Lu, X., Mou, X., Wu, J., Zhang, D., Zhang, L., Huang, F., Xu, F., Huang, S. 2010. "Improved- performance dye-sensitized solar cells using Nb-doped TiO 2 electrodes: Efficient electron injection and transfer", Advanced Functional Materials, 20, 509-515.
  • Lu, H., Wang, Y., Wang, Y., Liang, W., Yao, J. 2015. “Adjusting phase transition of titania- based nanotubes via hydrothermal and post treatment”, RSC Advances, 5, 89777-89782.
  • Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., E. Sutter, E., Batzill, M. 2013. “Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO 2 films”, Scientific Reports, 4, 4043-4050.
  • Lv, M., Zheng, D., Ye, M., Xiao, J., Guo, W., Lai, Y., Sun, L., Lin, C., Zuo, J. 2013. "Optimized porous rutile TiO 2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells", Energy and Environmental Science, 6,1615-1622.
  • Mali, S. S., Kim, H., Shim, C. S., Bae, W. R., Tarwal, N. L., Sadale, S. B., Patil, J. H. Kim, P. S., Hong, C. K. 2013. "Single-step synthesis of 3D nanostructured TiO 2 as a scattering layer for vertically aligned 1D nanorod photoanodes and their dye-sensitized solar cell properties", Royal Society of Chemistry,15, 5660-5667.
  • Maiaugree, W., Lowpa, S., Towannang, M., Rutphonsan, P., Tangtrakarn, A., Pimanpang, P., Maiaugree, S., Ratchapolthavisin, N., Sang-aroon, W., Jarernboon, W., Gratzel, M., 2003. “Dye sensitized solar cells”, Journal Photochemical Photobiology C: Photochemistry Reviews, 4, 145-153.
  • Mathew, S., Yella A., Gao, P., Humphry-Baker, R., Curchod, B. F. E., Ashari A. N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, Md. K., Gratzel, M. 2014. "Dye sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers", Nature Chemistry, 6, 242-247.
  • Mir, N., Lee, K., Paramasivam, I., Schmuki, P. 2012. “Optimizing TiO 2 nanotube top geometry for use in dye-sensitized solar cells”, Chemistry European Journal, 18, 11862- 11866.
  • Mo, S.D., Ching, M.Y. 1995. “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite", Physical review. B, Condensed matter, 51, 13023- 13032.
  • Morton, O. 2006. "Solar energy: A new day dawning: Silicon Valley sunrise", Nature, 443, 19- 22.
  • Moreira Gonçalves, L., de Zea Bermudez, V., Aguilar Ribeiro, H., Magalhaes Mendes, A. 2008. “Dye sensitized solar cells: A safe bet for the future”, Energy and Environmental Science, 1, 655-667, 2008.
  • National Renewable Energy Laboratory, “Research Cell Effiency Records”, https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf Son erişim tarihi: 7 Aralık 2018
  • O’Regan, B., Gratzel, M. 1991. “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films”, Nature, 353, 737-739.
  • Park, N. G., Van de Lagemaat, J., Frank, A. J. 2000. "Comparison of dye-sensitized rutile- and anatase-based TiO 2 solar cells", Journal of Physical Chemistry B, 104, 8989-8994.
  • Park, S. K., Jeong, J. S., Yun, T. K., Bae, J. Y. 2015. "Preparation of carbon-doped TiO 2 and its application as a photoelectrodes in dye-sensitized solar cells", Journal of Nanoscience and Nanotechnology, 2, 1529-1532.
  • Park, S. K., Yun, T. K., Bae, J. Y. 2015. "Fabrication N, F, and N/F-doped TiO 2 photoelectrodes for dye-sensitized solar cells", Journal of Nanoscience and Nanotechnology, 15, 5967-5970.
  • Pistor, P., Ruiz, A., Cabot, A., Izquierdo-Roca, V. 2016. “Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-destructive Characterisation Methodology”, Scientific Reports, 6, Article number: 35973.
  • Pour, M. M., Noori N. R., Mehdikhani, A. 2013. "Synthesis of single-phase anatase TiO 2 nanoparticles by hydrothermal treatment with application potential for photoanode electrodes of dye sensitized solar cells", Journal of Ceramic Processing Research, 14, 595-601.
  • Rajeshkumar, S., Bhosale, R., Lee, W., Ogale, S. B. 2010. “Room temperature synthesis of rutile TiO 2 hierarchical nanoneedle flower morphology for dye sensitized solar cell”, Journal of Nanoscience and Nanotechnology,10, 5894-5898.
  • Ronconi, C. M., Pereira, E. C. 2001. “Electrocatalytic properties of Ti/TiO 2 electrodes prepared by the Pechini method”, Journal of Applied Electrochemistry, 31, 319-323.
  • Rosales, B. A., Hanrahan, M. P., Boote, B. W., Rossini, A. J., Smith, E. A., Vela, J. 2017. “Lead Halide Perovskites: Challenges and Opportunities in Advanced Synthesis and Spectroscopy”, ACS Energy Letters, 2, 906-914.
  • Sedghi, A., Miankushki H. N. 2012. “Influence of TiO 2 electrode properties on performance of dye-sensitized solar cells”, International Journal Electrochemistry Science, 7,12078–12089
  • Sedghi, A., Miankushki, H. N. 2015. “The effect of drying and thickness of TiO 2 electrodes on the photovoltaic performance of dye-sensitized solar cells”, International Journal of Electrochemical Science, 10, 3354-3362.
  • Shaikh, S. F., Mane, R. S., Min, B. K., Hwang, Y. J., Joo, O.S. 2016. “D-sorbitol-induced phase control of TiO 2 nanoparticles and its application for dye-sensitized solar cells”, Scientific Reports, 6, 20103-20112.
  • Shalan, A. E., M. M. Rashad, M. M. 2013. "Incorporation of Mn 2+ and Co 2+ to TiO 2 nanoparticles and the performance of dye-sensitized solar cells", Applied Surface Science, 283, 975-981.
  • Shao, W., Gu, F., Li, C., Lu, M. 2010. "Highly efficient dye-sensitized solar cells by using a mesostructured anatase TiO 2 electrode with high dye loading capacity", Industrial and Engineering Chemistry Research, 49, 9111-9116.
  • Shokley, W., Queisser, H. J. 1961. “Detailed balance limit of efficiency of p-n junction solar cells”, Journal of Applied Physics, 32, 510-519.
  • Sommeling, P. M., O'Regan, B. C., Haswell, R. R., Smit, H. J. P., Bakker, N. J., Smits, J. J. T., Kroon, J. M., van Roosmalen, J. A. M. 2006. “Influence of a TiCl 4 post-treatment on nanocrystalline TiO 2 films in dye-sensitized solar cells”, Journal of Physical Chemistry B, 110, 19191-19197.
  • Son, H. J., Prasittichai, C., Mondloch, J. E., Luo, L., Wu, J., Kim, D., Farha, W., Hupp, J. T. 2013. “Dye stabilization and enhanced photoelectrode wettability in water-based dye- sensitized solar cells through post-assembly atomic layer deposition of TiO 2 ”, Journal of the American Chemical Society, 135,11529-11532.
  • Song, C. B., Qiang, Y. H., Zhao, Y. L., Gu, X. Q., Zhu, L., Song, J., Liu, X. 2014. "Dye- sensitized solar cells based on graphene-TiO 2 nanoparticles/TiO 2 nanotubes composite films", International Journal of Electrochemical Science, 9, 8090-8096.
  • Song, W., Gong, Y., Tian, J., Cao, G., Zhao, H., Sun, C. 2016. "Novel photoanode for dye- sensitized solar cells with enhanced light-harvesting and electron-collection efficiency", ACS Applied Materials and Interfaces, 8, 13418-13425.
  • Stoumpos, C. C., Malliakas, C. D., Kanatzidis, M. G. 2013. “Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties”, Inorganic Chemistry, 52, 9019-9038.
  • Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Herz, L. M., Petrozza, A., Snaith, H. J. 2013. “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber”, Science, 342, 341-344.
  • Su, H., Huang, Y. T., Chang, Y. H., Zhai, P., Hau, N. Y., Chun P., Cheung, H., Yeh, W. T., Wei, T. C. Feng, S.P. 2015. "The synthesis of Nb-doped TiO 2 nanoparticles for improved- performance dye sensitized solar cells", Electrochimica Acta, 182, 230-237.
  • Sun, Z., Kim, J. H., Zhao, Y., Attard, D., Dou, S. X. 2013. "Morphology-controllable 1D-3D nanostructured TiO 2 bilayer photoanodes for dye-sensitized solar cells", Chemical Communications, 49, 966-968.
  • Thomas, S., Deepak T. G., Anjusree G. S., Arun T. A., Naira S. V., Nair A.S. 2014. “A review on counter electrode materials in dye-sensitized solar cells”, Journal of Materials Chemistry A, 2, 4474-4490.
  • Tjong, S.C. 2013. Nanocrystalline Materials: Their synthesis-structure-property relationships and applications, Waltham. (2 nd edition). Elsevier.
  • Tricoli, A., Wallerand, A. S., Righettoni, M. 2012. “Highly porous TiO 2 films for dye sensitized solar cells,” Journal of Materials Chemistry, 22, 14254-14261.
  • Valantine, C. D. G. Pacchioni, Selloni, A. 2004. "Origin of the different photoactivity of N- doped anatase and rutile TiO 2 ", PurevB Pure vBulletin, 70, 85116-85119.
  • Wang, H., Wang, B., Yu, J., Hu, Y., Xia, C., Zhang, J., Liu, R. 2015. "Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes", Scientific Reports, 5, 9305-9313.
  • Wang, H., Hu Y. H. 2012. “Graphene as a counter electrode material for dye-sensitized solar cells”, Energy and Environmental Science, 5, 8182-8188.
  • Wang, S., Zhang, X., Zhou, G., Wang, Z. S. 2012. "Double-layer coating of SrCO 3 /TiO 2 on nanoporous TiO 2 for efficient dye-sensitized solar cells”, Physical Chemistry Chemical Physics, 14, 816-822.
  • Wang, Y. 2009. “Recent research progress on polymer electrolytes for dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, 93, 8, 1167-1175.
  • Wei, B. Y., Lin, H. M., Kao, C. C., Li, A. K. 2003. “Effect of calcination on photocatalytic activity of TiO 2 nanopowders”, Journal of Material Science and Engineering, 35, 64-69.
  • Wei, D. 2010. "Dye Sensitized Solar Cells", International Journal of Molecular Sciences, 11, 1103-1113.
  • Wolfbauer, G., Bond, A. M., Eklund, J. C., MacFarlane, D. R. 2001. “A channel flow cell system specifically designs to test the efficiency of redox shuttles in dye sensitized solar cells”, Solar energy materials and solar cells, 70, 85-101.
  • Wolpher, H., Sinha, S., Pan, J., Johansson, A., Lundqvist, M. J., Persson, P., Lomoth, R., Horiuchi, T., Miura, H., Sumioka, K., Uchida, S. 2004. “High efficiency of dye-sensitized solar cells based on metal free indoline dyes”, Journal of the American Chemical Society, 126, 12218-12219.
  • Wu, J., Lan, Z., Hao, S., Li, P., Lin, J., Huang, M., Fang, L., Huang, Y. 2008. “Progress on the electrolytes for dye-sensitized solar cells”, Pure and Applied Chemistry, 80, 2241-2258.
  • Wu, J., Lan Z., Hao S., Li P., Lin J., Huang M., Fang L., Huang Y. 2008. “Progress on the electrolytes for dye-sensitized solar cells”, Pure Applied Chemistry, 80, 11, 2241–2258.
  • Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Gratzel, M., Mhaisalkar, S., Sum, T. C. 2013. “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH 3 NH 3 PbI 3 ”, Science, 342, 344-347.
  • Yang, C. C., Zhang H. Q., Zheng Y. R. 2011. “DSSC with a novel Pt counter electrodes using pulsed electroplating techniques”, Current Applied Physics, 11, 1, 147–153.
  • Yang, L., Leung, W. F. 2011. "Application of a bilayer TiO 2 nanofiber photoanode for optimization of dye-sensitized solar cells", Advanced Materials, 23, 4559-4562.
  • Ye, M., Wen, X., Wang, M., Locozzia, J., Zhang, N., Lin, C., Lin, Z. 2015. "Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes", Materials Today, 18, 3, 155-162.
  • Yao, R.Y., Zhou, Z.J., Hou, Z.L., Wang, X., Zhou, W.H., Wu, S.X. 2013. “Surfactant-free CuInS 2 nanocrystals: an alternative counter-electrode material for dye-sensitized solar cells”, ACS Applied Materials and Interfaces, 5, 3143-3148.
  • Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., Diau, C. Y. Yeh, E. W., Zakeeruddin, S. M., Grätzel, M. 2011. “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency”, Science, 334, p. 629-636.
  • You, J., Hong, Z., Yang, Y.M., Chen, Q., Cai, M., Song, T. B., Chen, C. C., Lu, S., Liu, Y., Zhou, H., Yang, Y. 2014. “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility”, ACS Nano, 8, 1674-1680.
  • Yu, Ji., Yang, Y., Fan, R., Zhang, H., Li, L., Wei, L., Shi, Y., Pan, K., Fu, H. 2013. "Er 3+ and Yb 3+ co-doped TiO 2−x F x up-conversion luminescence powder as a light scattering layer with enhanced performance in dye sensitized solar cells", Journal of Power Sources, 243, 436- 446.
  • Yu, H., Zhang, S., Zhao, H., Xue, B., Liu, P., Will, G. 2009. “High-performance TiO 2 photoanode with an efficient electron transport network for dye-sensitized solar cells”, The Journal of Physical Chemistry C, 113, 16277-16282.
  • Yu, Z., Vlachopoulos N., Gorlovb M. Kloo L. 2011. “Liquid electrolytes for dye-sensitized solar cells”, Dalton Transactions, 40, 10289.
  • Zhang, P., Hu, Z., Wang, Y., Qin, Y., Li, W., Wang, J. 2016. "A bi-layer composite film based on TiO 2 hollow spheres, P25 and multi-walled carbon nanotubes for efficient photoanode of dye-sensitized solar cell", Nano-Micro Letters, 8, 232-239.
  • Zhang, S., Yang, X., Numata, Y., Han, L. 2013. “Highly efficient dye-sensitized solar cells: progress and future challenges”, Energy and Environmental Science, 6, 1443-1464.
  • Zhao, X. G., Park J. Y, Guz H. B. 2014. “Addition of electrospun TiO 2 nanofibers for improving the charge capabilities of polymer electrolyte-based DSSCs”, Journal of The Electrochemical Society, 161, 9, 517-522.
  • Zhou, W., Liu, H., Boughton, R. I., Du, G., Lin, J., Wang, J., Liu, D. 2010. “One-dimensional single-crystalline Ti–O based nanostructures: properties, synthesis, modifications and applications”, Journal of Materials Chemistry, 20, 5993-6008.
  • Zhu, K., Kopidakis, N., Neale, N. R., van de Lagemaat, J., Frank, A. J. 2006. “Influence of surface area on charge transport and recombination in dye-sensitized TiO 2 solar cells”, The Journal of Physical Chemistry B, 110, 25174-25180.
  • Zubavichus, Y. V., Slovokhotov, Y. L., Nazeeruddin, M. K., Zakeeruddin, S.M., Gratzel, M., Shklover, V. 2002. “Structural characterization of solar cell prototypes based on nanocrystalline TiO 2 anatase sensitized with Ru complexes. X-ray diffraction, XPS and XAFS spectroscopy study”, Chemistry of Materials, 4, 3556-3563.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.