TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ

8 2

Proje Grubu: MAG Sayfa Sayısı: 187 Proje No: 214M308 Proje Bitiş Tarihi: 15.05.2018 Metin Dili: Türkçe İndeks Tarihi: 18-03-2020

TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ

Öz:
Bu çalısmada, yakın alan ısınımını (YAI) incelemek ve siyah cisim ısımasının üzerinde ısı geçisi elde edebilmek amacıyla, karakteristik uzunlugu ısıl ısıma dalgaboylarından daha küçük olan, nanometrik bosluklu yapılar gelistirilmistir. Literatürde vakum ortamlarında yapılan çalısmaların aksine, gerçek çalısma ortamında testler yapabilmek için birbirine bakan yüzeyleri nanometre mertebesinde vakum boslugu ile ayrılmıs yongalar tasarlanıp üretilmistir. Isımayı, elektriksel dönüsüme elverisli sekilde harmanlamak için uygun rezonans frekanslarında yüzey modlarına sahip malzemeler teorik olarak incelenmistir. Sonrasında silisyum karbürün (SiC), silisyum (Si) yüzeyler üzerine ince film olarak kaplaması yapılmıstır. Farklı film kalınlıgı ve yonga içi bosluk mesafesi kombinasyonlarının rezonans frekansına etkileri teorik olarak incelenmistir. Ince filmlerin kristal yapısı ısıl islem ile iyilestirilmis ve karakterizasyonları yapılmıstır. Yonga dısındaki atmosferik basınç ile yonga içi vakum (düsük basınç) farkından dogan bükülmeyi azaltmak ve pul yüzeylerinin sızdırmaz sekilde birlestirmesinde, iletim ısı geçisi alanını minimum olacak sekilde saglamak üzere farklı yonga içi yöntemleri ile üretilmistir. Toplam ısı geçisi (iletim + ısınım) dahilinde iletim ve ısınım bilesenlerini mertebesel olarak belirleyebilmek için, toplam boyutları sabit, farklı ısı iletim alanlarına sahip dört farklı yapıda yonga tasarlanmıstır. Sözkonusu yongalar, SiC kaplı Si pulların üzerinde bir dizi mikro-elektro-mekanik sistem (MEMS) üretim basamagı izlenerek üretilmistir. Bu yongaların bos iç yüzeylerinde bulunabilecek farklı nano-çıkıntıların YAI üzerine etkileri, olusturulan sayısal bir model ile arastırılmıs ve üretilmesi en uygun tasarım belirlenmistir. Içinde 10-5 mbar mertebesinde vakumu tutabilen ve ısınım alanı iletim alanının 1.4 ila 6 katı olacak sekilde tasarlanmıs yongalar, basarı ile üretilmis ve test edilmistir. Proje kapsamında ayrıca, vakum ortamı dısında gerçek bir yonganın testlerinin yapılabilmesi için uluslararası düzeyde, özgün bir deney düzenegi gelistirilmis, kontrollü ısıtma ve sogutma yapabilen ve ısı akısını hassas ölçebilen bu düzenekte deneyler basarıyla tamamlanmıstır. 0,1 mm düz duvarlı yapıda ısınımın toplam ısı transferine oranı %13.6 olarak ayrıstırılabilmistir. Olusturulan düzenek, farklı arastırma gruplarının gelistirecegi termofotovoltaik (TPV) hücrelerin hassas bir biçimde test edilmesine olanak saglamaktadır
Anahtar Kelime: nano-ölçekte ısıma yakın alan ısınımı termofotovoltaik hücreler Enerji harmanlama

Konular: Mühendislik, Elektrik ve Elektronik Mühendislik, Makine
Erişim Türü: Erişime Açık
  • Akaoglu, B., Sel, K., Atilgan, I., Katircioğlu, B. 2008. “Carbon Content Influence on the Optical Constants of Hydrogenated Amorphous Silicon Carbon Alloys”, Optical Materials, 30, 8, 1257– 1267.
  • 1- Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials (Makale - Diger Hakemli Makale),
  • Ambrosone, G., Coscia, U., Ferrero, S., Giorgis, F., Mandracci, P., Pirri, C.F. 2002. “Structural and Optical Properties of Hydrogenated Amorphous Silicon-Carbon Alloys Grown by Plasma- Enhanced Chemical Vapour Deposition at Various Rf Powers”, Philosophical Magazine B, 82, 1, 35–46.
  • 2- Impacts of Material Types and Fabrication Methods to Enhance Near Field Radiative Transfer for Energy Harvesting Devices (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • American Institute of Steel Construction. (2016), “Beam Diagrams and Formulas”, İnternet adresi; http://www-classes.usc.edu/engr/ce/457/moment_table.pdf (Son erişim tarihi: 12Nisan 2016).
  • 3- Tailoring Near-Field Thermal Radiation With Mesoporous GaN and H-BN Designer Metamaterials (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Anzalone, R., Locke, C., Carballo, J., Piluso, N., Severino, A., D’Arrigo, G., Volinsky, A.A., vd. 2010. “Growth Rate Effect on 3C-SiC Film Residual Stress on (100) Si Substrates”, Materials Science Forum, 645–648, 143–146.
  • 4- Near-Field Thermal Emission from GaN-SiC Double-layer Structures (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Artvin, Z. 2012, Fabrication of Nanostructured Samples for the Investigation of Near Field Radiation Transfer, Middle East Technical University.
  • 5- Towards Nano-Scale Thermophotovoltaic Applications: Discussions for Material Selection and Measuring System (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Asheghi, M., Touzelbaev, M. N. Goodson, K.E., Leung, Y.K., Wong, S.S. 1998. “Temperature Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates”, J. Heat Transfer, 120, 30–36.
  • 6- GaN-SiC Katmanlı Nano-Yapılar ve Yakın-Alan Isınımına Sıcaklık Farkı Ve Mesafenin Etkileri (Bildiri - Ulusal Bildiri - Sözlü Sunum),
  • Awad, Y., El Khakani, M.A., Brassard, D., Smirani, R., Camiré, N., Lessard, M., Aktik, C., vd. 2010. “Effect of Thermal Annealing on the Structural and Mechanical Properties of Amorphous Silicon Carbide Films Prepared by Polymer-Source Chemical Vapor Deposition”, Thin Solid Films, 518, 10, 2738–2744.
  • 7- Termofotovoltaik Sistemlerde Yakin Alan Isinimi Ile Enerji Harmanlama (Bildiri - Ulusal Bildiri - Poster Sunum),
  • Bai, Y., Jiang, Y., Liu, L. 2014. “Role of Surface Plasmon Polaritons on the Enhancement of the Near-Field Thermal Radiation From Fishnet Metamaterial”, J. Phys. D: Appl. Phys, 47,. 445304, 7.
  • Basa, D.K., Ambrosone, G., Coscia, U., Setaro, A. 2009. “Crystallization of Hydrogenated Amorphous Silicon Carbon Films with Laser and Thermal Annealing”, Applied Surface Science, 255, 10, 5528–5531.
  • Basa, D.K.,Smith, F.W. 1990. “Annealing and Crystallization Processes in a Hydrogenated Amorphous Si-C Alloy Film”, Thin Solid Films, 192, 1, 121–133. Basu, S. 2009. Near-Field Radiative Energy Transfer at Nanometer Distances, Georgia Institute of Technology.
  • Basu, S., Yang, Y.,Wang, L. 2015. “Near-Field Radiative Heat Transfer Between Metamaterials Coated With Silicon Carbide Thin Films”, Applied Physics Letters, 106, 033106, 1–4.
  • Bauer, T. 2011. Thermophotovoltaics Basic Principles and Critical Aspects of System Design, Springer-Verlag, Berlin, Heidelberg.
  • Beer, F.P., Johnston Jr., E.R., DeWolf, J.T. 2006. Mechanics of Materials, Fourth Edition in SI Units, McGraw-Hill Press.
  • Ben-Abdallah, P., Joulain, K., Drevillon, J., Domingues, G. 2009. “Near-Field Heat Transfer Mediated by Surface Wave Hybridization between two Films”, Journal of Applied Physics, 106, 044306, 1–11.
  • Bernardi, M.P., Milovich, D., Francoeur, M. 2016. “Radiative Heat Transfer Exceeding the Blackbody Limit between Macroscale Planar Surfaces Separated by a Nanosize Vacuum Gap”, Nature Communications, 7, 12900, 1–7.
  • Brar, V.W., Jang, M.S., Sherrott, M., Kim, S., Lopez, J.J., Kim, L.B., Choi, M., vd. 2014. “Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/ Monolayer h-BN Heterostructures”, Nano Letters, 14, 3876−3880.
  • Calcagno, L., Musumeci, P., Roccaforte, F., Bongiorno, C., Foti, G. 2001. “Crystallisation Mechanism of Amorphous Silicon Carbide”, Applied Surface Science, 184, 1–4, 123–127.
  • Captec. (2018), “Isı Akısı Sensörü”, İnternet adresi; https://www.captec.fr/copie-deaccueil? lightbox=dataItem-jdj4q41h1 (Son erişim tarihi: 11 Temmuz 2018).
  • De Cesare, G., La Monica, S., Maiello, G., Proverbio, E., Ferrari, A., Dinescu, M., Chitica, N., vd. 1996. “Crystallization of Amorphous Silicon Carbide Thin Films by Laser Treatment”, Surface and Coatings Technology, 80, 1–2, 237–241.
  • Chang, J.Y., Yang, Y., Wang, L. 2015. “Tungsten Nanowire Based Hyperbolic Metamaterial Emitters for Near-Field Thermophotovoltaic Applications”, International Journal of Heat and Mass Transfer, 87, 237–247.
  • Chaturvedi, P. 2009. Optical Metamaterials: Design, Characterization and Applications, University of Illinois at Urbana-Champaign.
  • Chen, G. 2005, Nanoscale Energy Transport and Conversion- A Parallel Treatment of Electrons, Molecules, Phonons, and Photons.
  • Chen, T., Köhler, F., Heidt, A., Huang, Y., Finger, F., Carius, R. 2011. “Microstructure and Electronic Properties of Microcrystalline Silicon Carbide Thin Films Prepared by Hot-Wire CVD”, Thin Solid Films, 519, 14, 4511–4515.
  • Chen, Y., Xuan, Y. 2015. “The Influence of Surface Roughness on Nanoscale Radiative Heat Flux Between Two Objects”, Journal of Quantitative Spectroscopy and Radiative Transfer, 158, 52–60.
  • Cleary, J.W., Peale, R.E., Shelton, D.J., Boreman, G.D., Smith, C.W., Ishigami, M., Soref, R., vd. 2010. “IR Permittivities for Silicides and Doped Silicon”, Journal of the Optical Society of America B, 27, 4, 730–734.
  • Coscia, U., Ambrosone, G., Gesuele, F., Grossi, V., Parisi, V., Schutzmann, S., Basa, D.K. 2007. “Laser Annealing Study of PECVD Deposited Hydrogenated Amorphous Silicon Carbon Alloy Films”, Applied Surface Science, 254, 4, 984–988.
  • Custom Thermoelectric. (2018), “Termoelektrik Soğutucu”, İnternet adresi; https://customthermoelectric.com/ (Son erişim tarihi: 12 Temmuz 2018). DeMeo, D.F. 2013. Nanostructures and Metaphotonics for Thermophotovoltaic Generation of Electricity, Tufts University.
  • Didari, A., Elçioğlu, E.B., Okutucu Özyurt, T., Mengüç, M.P. 2018. “Near-Field Radiative Transfer in Spectrally Tunable Double-Layer Phonon-Polaritonic Metamaterials”, Journal of Quantitative Spectroscopy and Radiative Transfer, 212, 120–127.
  • Didari, A., Mengüç, M.P. 2014. “Analysis of Near-Field Radiation Transfer within Nano-gaps Using FDTD Method”, Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 214– 226.
  • Didari, A., Mengüç, M.P. 2015a. “Near-Field Thermal Emission between Corrugated Surfaces Separated by Nano-gaps”, Journal of Quantitative Spectroscopy and Radiative Transfer, 158, 43–51
  • Didari, A., Mengüç, M.P. 2015b. “Near- to Far-field Coherent Thermal Emission by Surfaces Coated by Nanoparticles and the Evaluation of Effective Medium Theory”, Optics Express, 23, 11, 547–552.
  • Didari, A., Mengüç, M.P. 2017. “A Design Tool for Direct and Non-Stochastic Calculations of Near-field Radiative Transfer in Complex Structures: The NF-RT-FDTD Aalgorithm”, Journal of Quantitative Spectroscopy and Radiative Transfer, 197, 95–105.
  • DiMatteo, R.S., Greiff, P., Finberg, S.L., Young-Waithe, K. A. Choy, H.K.H., Masaki, M.M., Fonstad, C.G. 2001. “Enhanced Photogeneration of Carriers in a Semiconductor via Coupling Across a Nonisothermal Nanoscale Vacuum Gap”, Applied Physics Letters, 79, 1984–1986.
  • Domoto, G.A., Boehm, R.F., Tien, C.L. 1970. “Experimental Investigation of Radiative Transfer Between Metallic Surfaces at Cryogenic Temperatures”, Journal of Heat Transfer, 92, 3, 412– 416.
  • Dönmezer, F.N., Mengüç, M.P., Okutucu, T. 2010. “Dependent Absorption and Scattering by Interacting Nanoparticles”, 6. Uluslararası Işınım Transferi Sempozyumu (RAD10), Antalya, Türkiye.
  • Dupré, O., Vaillon, R., Francoeur, M., Chapuis, P.-O., Mengüç, M.P. 2013. “Thermal Issues in the Design of PV Devices: Focus on the Case of Nanoscale-Gap Thermophotovoltaic Cells”, 7. Uluslararası Işınım Transferi Sempozyumu (RAD-13), Kuşadası, Türkiye.
  • Elçioğlu, E.B., Didari, A., Okutucu Özyurt, T., Mengüç, M.P. 2018. “Near-Field Radiative Transfer Between Doped Silicon Wafers and Silicide Films”, NanoTR-14, 14. Nanobilim ve Nanoteknoloji Konferansı, Özet Kitabı, Çeşme, İzmir, Türkiye, 290.
  • Elzouka, M., Ndao, S. 2015. “Towards a Near-field Concentrated Solar Thermophotovoltaic Microsystem : Part I – Modeling”, Solar Energy, 141, 323–333.
  • van Exter, M., Grischkowsky, G. 1990, “Carrier Dynamics of Electrons and Holes in Moderately Doped Silicon”, Physical Review B, 41, 17, 12140–12149.
  • Florescu, M., Busch, K., Dowling, P. 2007. “Thermal Radiation in Photonic Crystals”, Phys Rev B, 75, 201101, 4.
  • Francoeur, M. 2010. Near-Field Radiative Transfer: Thermal Radiation, Thermophotovoltaic Power Generation and Optical Characterization, University of Kentucky.
  • Francoeur, M. 2015. “Nanostructures Feel the Heat”, Nature Nanotechnology, 10, 3, 206–208.
  • Francoeur, M., Basu, S., Petersen, S.J. 2011. “Electric and Magnetic Surface Polariton Mediated Near-field Radiative Heat Transfer Between Metamaterials made of Silicon Carbide Particles”, Optics Express, 19, 20, 18774.
  • Francoeur, M., Mengüç, M.P. 2008. “Role of Fluctuational Electrodynamics in Near-field Radiative Heat Transfer”, Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 2, 280–293.
  • Francoeur, M., Mengüç, M.P., Vaillon, R. 2010., “Spectral Tuning of Near-field Radiative Heat Flux between two Thin Silicon Carbide Films”, Journal of Physics D: Applied Physics, 43, 075501, 1–12.
  • Francoeur, M., Mengüç, M.P., Vaillon, R. 2011, “Coexistence of Multiple Regimes for Nearfield Thermal Radiation between two Layers Supporting Surface Phonon Polaritons in the Infrared”, Physical Review B, 84, 075436, 1–9.
  • Francoeur, M., Vaillon, R., Mengüç, M.P. 2011. “Thermal Impacts on the Performance of Nanoscale-gap Thermophotovoltaic Power Generators”, IEEE Transactions on Energy Conversion, 26, 2, 686–698.
  • Ghanekar, A., Lin, L., Su, J., Sun, H. 2015, “Role of Nanoparticles in Wavelength Selectivity of Multilayered Structures in the far-field and Near-field Regimes”, Optics Express, 23, 19, 1129–1139.
  • Ghashami, M., Geng, H., Kim, T., Iacopino, N., Cho, S.K., Park, K. 2018, “Precision Measurement of Phonon-Polaritonic Near-Field Energy Transfer between Macroscale Planar Structures under Large Thermal Gradients”, Physical Review Letters, 120, 175901, 1–6.
  • Gray, A.S., Uher, C. 1977. “Thermal Conductivity of Mica at low Temperatures”, Journal of Materials Science, 12, 5, 959–965.
  • Hartel, A.M., Künle, M., Löper, P., Janz, S., Bett, A.W. 2010., “Amorphous SixC1-x:H Single Layers Before and After Thermal Annealing: Correlating Optical and Structural Properties”, Solar Energy Materials and Solar Cells, 94, 11, 1942–1946.
  • HATSYS. (2018), “Isı Kontrol Cihazı”, İnternet adresi; http://www.hatsys.com/ (Son erişim tarihi: 12 Temmuz 2018).
  • Hossain, M., Yun, M., Korampally, V., Gangopadhyay, S. 2008, “Low Temperature Crystallization of Amorphous Silicon Carbide Thin Films for p-n Junction Devices Fabrication”, Journal of Materials Science: Materials in Electronics, 19, 8–9, 801–804.
  • Howell, J.R., Mengüç, M.P., Siegel, R. 2016. Thermal Radiation Heat Transfer (6. Basım), CRC Press, Taylor & Francis Group, Boca Raton, FL.
  • Ilic, O., Jablan, M., Joannopoulos, J.D., Celanovic, I., Soljačić, M. 2012. “Overcoming the Black Body Limit in Plasmonic and Graphene Near-Field Thermophotovoltaic Systems”, Optics Express, 20, A366–A384.
  • Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S. 2007. Fundamentals of Heat and Mass Transfer, (6. Basım), John Wiley & Sons.
  • Inoue, S., Yoshii, K., Umeno, M., Kawabe, H. 1987. “Crystallization Behaviour of Amorphous SiC Films Prepared by R.F. Sputtering”, Thin Solid Films, 151, 3, 403–412.
  • Janz, S. 2006. Amorphous Silicon Carbide for Photovoltaic Applications, Fraunhofer Institut für Solare Energiesysteme.
  • Jokubavicius, V., Yazdi, G.R., Liljedahl, R., Ivanov, I.G., Sun, J., Liu, X., Schuh, P., vd. 2015. “Single Domain 3C-SiC Growth on off-oriented 4H-SiC Substrates”, Crystal Growth and Design, 15, 6, 2940–2947.
  • Jung, C.-K., Lim, D.-C., Jee, H.-G., Park, M.-G., Ku, S.-J., Yu, K.-S., Hong, B., vd. 2003. “Hydrogenated Amorphous and Crystalline SiC Thin Films Grown by RF-PECVD and Thermal MOCVD; Comparative Study of Structural and Optical Properties”, Surface and Coatings Technology, 171, 1–3, 46–50.
  • Kahar, S.M., Voon, C.H., Lee, C.C., Hashim, U., Md Arshad, M.K., Lim, B.Y., Gopinath, S.C.B., vd. 2016. “Synthesis of SiC Nanowhiskers from Graphite and Ssilica by Microwave Heating”, Materials Science-Poland, 34, 4, 770–779.
  • Keysight Technologies. 2018. “Veri Toplama Cihazı”, İnternet adresi; https://www.keysight.com (Son erişim tarihi: 7 Şubat 2018).
  • El khalfi, A.-İ., Ech-chamikh, E., Ijdiyaou, Y., Azizan, M., Essafti, A., Nkhaili, L., El Kissani, A., vd. 2017. “FTIR and Raman Study of Rapid Thermal Annealing and Oxidation Effects on Structural Properties of Silicon-rich SixC1-x Thin Films Deposited by R.F co-sputtering”, Vibrational Spectroscopy, 89, 44–48.
  • Kim, Y.-T., Cho, S.-M., Hong, B., Suh, S.-J., Jang, G.-E., Yoon, D.-H. 2002. “Annealing Effect on the Optical Properties of a-SiC:H Films Deposited by PECVD”, Materials Transactions, 43, 8, 2058–2062.
  • Kuenle, M., Janz, S., Eibl, O., Berthold, C., Presser, V., Nickel, K.G. 2009. “Thermal Annealing of SiC Thin Films with Varying Stoichiometry”, Materials Science and Engineering B, 159–160, 355–360.
  • Kulikovsky, V., Vorlí, V., Bohá, P., Stranyánek, M. 2008. “Hardness and Elastic Modulus of Amorphous and Nanocrystalline SiC and Si Films”, Surface & Coatings Technology, 202, 9, 1738–1745.
  • Künle, M., Kaltenbach, T., Löper, P., Hartel, A., Janz, S., Eibl, O. and Nickel, K.G. 2010. “Sirich a-SiC:H Thin Films: Structural and Optical Transformations During Thermal Annealing”, Thin Solid Films, 519, 1, 151–157.
  • Lau, J.Z.-J., Bong, V.N.-S., Wong, B.T. 2016. “Parametric Investigation of Nano-Gap Thermophotovoltaic Energy Conversion”, Journal of Quantitative Spectroscopy & Radiative Transfer, 171, 39–49.
  • Lenert, A., Bierman, D.M., Nam, Y., Chan, W.R., Celanović, I., Soljačić, M., Wang, E.N. 2014. “A Nanophotonic Solar Thermophotovoltaic Device”, Nature Nanotechnology, 9, 2, 126–130.
  • Li, Z., Bradt, R.C. 1986. “Thermal Expansion of the Cubic (3C) Polytype of SiC”, Journal of Materials Science, 21, 12, 4366–4368.
  • Liu, B., Shen, S. 2013. “Broadband Near-Field Radiative Thermal Emitter/Absorber Based on Hyperbolic Materials: Direct Numerical Simulation by the Wiener Chaos Expansion Method”, Phys Rev B, 87, 115403, 7.
  • Liu, C. 2014. Foundations of MEMS: International Edition (2. Baskı), Pearson Education Limited.
  • Liu, X.L., Zhang, R.Z., Zhang, Z.M. 2014. “Near-Field Radiative Heat Transfer with Doped- Silicon Nanostructured Metamaterials”, International Journal of Heat and Mass Transfer, 73, 389–398.
  • Loomis, J., Maris, H. 1994. “Theory of Heat Transfer by Evanescent Electromagnetic Waves”, Physical Review B, 50, 24, 18517–18524.
  • Mai, C., Li, M., Yang, S. 2015. “Low Temperature Direct Bonding of Silica Glass via Wet Chemical Surface Activation”, RSC Advances, 5, 53, 42721–42727.
  • Mai, C., Sun, J., Chen, H., Mai, C.-K., Li, M. 2016. “Silicon Direct Bonding via low-temperature Wet Chemical Surface Activation”, RSC Advances, 43, 1–3, 1–7.
  • Merazga, S., Keffous, A., Brighet, A., Kechouane, M. 2017. “Effect of Thermal Annealing on the Optical and Structural Properties of the a-SiC Thin Films Deposited by DC Magnetron Sputtering”, Nano World Journal, 3, 3, 54–58.
  • Mulet, J.P., Joulain, K., Carminati, R., Greffet, J.J. 2002. “Enhanced Radiative Heat Transfer at Nanometric Distances”, Microscale Thermophysical Engineering, 6, 3, 209–222.
  • Musumeci, P., Reitano, R., Calcagno, L., Roccaforte, F., Makhtari, A., Grimaldi, M.G. 1997. “Relaxation and Crystallization of Amorphous Silicon Carbide Probed by Optical Measurements”, Philosophical Magazine B, 76, 3, 323–333.
  • Narayanaswamy, A., Chen, G. 2005. “Thermal Radiation in 1D Photonic Crystals”, Journal of Quantitative Spectroscopy and Radiative Transfer, 93, 1–3, 175–183.
  • Otey, C., Fan, S. 2011. “Numerically Exact Calculation of Electromagnetic Heat Transfer Between Dielectric Sphere and Plate”, Phys Rev B, 84, 245431, 6.
  • Pendry, J.B. 1999, “Radiative Exchange of Heat Between Nanostructures”, Journal of Physics: Condensed Matter, 11, 35, 6621–6633.
  • Perez-Madrid, A., Lapas, L.C., Rubi, J.M. 2013. “A Thermokinetic Approach to Radiative Heat Transfer at the Nanoscale”, PLoS ONE, 8, 3, 1–6.
  • Polder, D., Van Hove, M. 1971. “Theory of Radiative Transfer between Closely Spaced Bodies”, Physical Review B, 4, 10, 3303–3314.
  • Rajagopalan, T., Wang, X., Lahlouh, B., Ramkumar, C., Dutta, P., Gangopadhyay, S. 2003. “Low Temperature Deposition of Nanocrystalline Silicon Carbide Films by Plasma Enhanced Chemical Vapor Deposition and Their Structural and Optical Characterization”, Journal of Applied Physics, 94, 8, 5252–5260.
  • Rousseau, E., Siria, A., Jourdan, G., Volz, S., Comin, F. 2009. “Radiative Heat Ttransfer at the Nanoscale”, Nature Photonics, 3, 514–517.
  • Rytov, S.M. 1959, Theory of Electric Fluctuations and Thermal Radiation, Air Force Cambridge Research Center, Bedford.
  • Rytov S.M., Y.A., K., V.I., T. 1989, Principles of Statistical Radiophysics 3: Elements of Random Fields, Springer, New York.
  • Shaik, H., Raman, K.H.T., Rao, G.M. 2012. “Influence of Si–C Bond Density on the Properties of a-Si1−xCx Thin Films”, Applied Surface Science, 258, 7, 2989–2996.
  • Shen, S., Mavrokefalos, A., Sambegoro, P., Chen, G. 2012. “Nanoscale Thermal Radiation between Two Gold Surfaces”, Applied Physics Letters, 100, 233114, 1–4.
  • Shen, S., Narayanaswamy, A., Chen, G. 2009. “Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps”, Nano Letters, 9, 8, 2909–2913.
  • Singh, A.V., Chandra, S., Kumar, S., Bose, G. 2012. “Mechanical and Structural Properties of RF Magnetron Sputter-deposited Silicon Carbide Films for MEMS Applications”, Journal of Micromechanics and Microengineering, 22, 025010, 1–7.
  • Song, D., Cho, E.-C., Cho, Y.-H., Conibeer, G., Huang, Y., Huang, S., Green, M.A. 2008. “Evolution of Si (and SiC) Nanocrystal Precipitation in SiC Matrix”, Thin Solid Films, 516, 12, 3824–3830.
  • Spitzer, W.G., Kleinman, D.A., Frosch, C.J. 1959. “Infrared Properties of Cubic Silicon Carbide Films”, Physical Review, 113, 1, 133–136.
  • Stelmakh, V., Chan, W. R. Joannopoulos, J.D., Soljacic, M., Celanovic, I., Sablon, K. 2016. “Improved Thermal Emitters for Thermophotovoltaic Energy Conversion”, ASME 2016 5. Uluslararası Mikro/Nano Ölçekte Isı ve Kütle Transferi Konferansı MNHMT2016, Singapur.
  • TEİAŞ. (2017), “Türkiye Elektrik Enerjisi İstatistikleri”, TMMOB Elektrik Mühendisleri Odası, İnternet adresi; http://www.emo.org.tr/genel/bizden_detay.php?kod=88369#.VWNkd0bMJkZ (Son erişim tarihi: 4 Temmuz 2018).
  • Tiwald, T.E., Woollam, J.A., Zollner, S., Christiansen, J., Gregory, R.B., Wetteroth, T., Wilson, S.R. 1999. “Carrier Concentration and Lattice Absorption in Bulk and Epitaxial Silicon Carbide Determined Using Infrared Ellipsometry”, Physical Review B, 60, 16, 11464–11474.
  • Ulrich, S., Theel, T., Schwan, J., Batori, V., Scheib, M., Ehrhardt, H. 1997. “Low Temperature Formation of β-Silicon Carbide”, Diamond and Related Materials, 6, 5–7, 645–648.
  • Wang, A.-H., Cai, J.-J. 2011. “Application of Micro/nanoscale Thermal Radiation to Thermophotovoltaic System”, J. Cent. South Univ. Technol., 18, 2176−2184.
  • Wang, L., Dimitrijev, S., Walker, G., Han, J., Iacopi, A., Tanner, P., Hold, L., vd. 2013, “Color Chart for Thin SiC Films Grown on Si Substrates”, Materials Science Forum, 740–742, 279– 282.
  • Wang, Y., Lin, J., Huan, C.H.A., Feng, Z.C., Chua, S.J. 2001, “High Temperature Annealing of Hydrogenated Amorphous Silicon Carbide Thin Films”, Thin Solid Films, 384, 2, 173–176.
  • Watanabe, H., Yamada, N., Okaji, M. 2004. “Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 K”, International Journal of Thermophysics, 25, 1, 221–236.
  • Watjen, J.I. 2016. Study of Radiative Properties of Thin Films and Near-Field Radiation for Thermophotovoltaic Applications, Georgia Institute of Technology.
  • Webb, K.D. 2012, Measurement of Near-Field Heat Transfer between Plane-Parallel Silica Films, Boğaziçi University.
  • Xuan, Y. 2014. “An Overview of Micro/Nanoscaled Thermal Radiation and its Applications”, Photon Nanostruct: Fundam Appl., 12, 93–113.
  • Xue, K., Niu, L.-S., Shi, H.-J., Liu, J. (2008), “Structural Relaxation of Amorphous Silicon Carbide Thin Films in Thermal Annealing”, Thin Solid Films, 516, 12, 3855–3861.
  • Yablonovitch, E. 2001. “Photonic Crystals: Semiconductors of Light”, Sci Am, 47–55.
  • Zhang, R.Z., Liu, X., Zhang, Z.M. 2015., “Near-Field Radiation Between Graphene-Covered Carbon Nanotube Arrays”, AIP Advances, 5, 053501, 12.
  • Zhang, X., Wu, D., Sun, C., Zhang, X. 2017. “Artificial Phonon-Plasmon Polariton at the Interface of Piezoelectric Metamaterials and Semiconductors”, Physical Review B, 085318, 5.
  • Zhang, X.X., Raskin, J.P. 2005, “Low-Temperature Wafer Bonding: A Study of Void Formation and Influence on Bonding Strength”, Journal of Microelectromechanical Systems, 14, 2, 368– 382.
  • Zhao, Y., Tang, G.H., Li, Z.Y. 2012. “Parametric Investigation for Suppressing Near-Field Thermal Radiation Between Two Spherical Nanoparticles”, International Communications in Heat and Mass Transfer, 39, 918–922.
  • Zheng, Z., Xuan, Y. 2011. “Theory of Near-Field Radiative Heat Transfer for Stratified Magnetic Media”, Int J Heat Mass Tran, 54, 1101–1110.
  • Zhou, N., Xu, X. 2015. “Metamaterial-Based Perfect Absorbers for Efficiently Enhancing Near Field Radiative Heat Transfer”, Journal of Quantitative Spectroscopy & Radiative Transfer, 167, 156–163.
APA OKUTUCU ÖZYURT H, MENGÜÇ M (2018). TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. , 1 - 187.
Chicago OKUTUCU ÖZYURT Hanife Tuba,MENGÜÇ Mustafa Pınar TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. (2018): 1 - 187.
MLA OKUTUCU ÖZYURT Hanife Tuba,MENGÜÇ Mustafa Pınar TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. , 2018, ss.1 - 187.
AMA OKUTUCU ÖZYURT H,MENGÜÇ M TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. . 2018; 1 - 187.
Vancouver OKUTUCU ÖZYURT H,MENGÜÇ M TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. . 2018; 1 - 187.
IEEE OKUTUCU ÖZYURT H,MENGÜÇ M "TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ." , ss.1 - 187, 2018.
ISNAD OKUTUCU ÖZYURT, Hanife Tuba - MENGÜÇ, Mustafa Pınar. "TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ". (2018), 1-187.
APA OKUTUCU ÖZYURT H, MENGÜÇ M (2018). TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. , 1 - 187.
Chicago OKUTUCU ÖZYURT Hanife Tuba,MENGÜÇ Mustafa Pınar TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. (2018): 1 - 187.
MLA OKUTUCU ÖZYURT Hanife Tuba,MENGÜÇ Mustafa Pınar TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. , 2018, ss.1 - 187.
AMA OKUTUCU ÖZYURT H,MENGÜÇ M TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. . 2018; 1 - 187.
Vancouver OKUTUCU ÖZYURT H,MENGÜÇ M TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ. . 2018; 1 - 187.
IEEE OKUTUCU ÖZYURT H,MENGÜÇ M "TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ." , ss.1 - 187, 2018.
ISNAD OKUTUCU ÖZYURT, Hanife Tuba - MENGÜÇ, Mustafa Pınar. "TERMOFOTOVOLTAİK ENERJİ HARMANLAMA SİSTEMLERİNDE YAKIN ALAN IŞINIM DENEYLERİ". (2018), 1-187.