6 7

Proje Grubu: ÇAYDAG Sayfa Sayısı: 198 Proje No: 115Y629 Proje Bitiş Tarihi: 15.10.2018 Metin Dili: Türkçe İndeks Tarihi: 18-03-2020

Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme

Öz:
ODTÜ Deniz Bilimleri Enstitüsü tarafından Mersin Körfezi?nde 1997 yılından bu yana sürdürülen Erdemli Zaman Serisi (ETS) programı dahilinde ölçülen degiskenlere ek olarak, bu proje kapsamında toplam su kolonu derinligi 200 metre olan istasyonda altı farklı derinlikten bir yıl boyunca aylık periyotlarda deniz suyu örneklemesi yapılmıstır. Bu örneklerde yeni nesil dizileme yönteminin kullanıldıgı amplikon dizilemesi (metagenomik) analizleri yapılarak biyojeokimyasal döngülerde önemli roller oynayan bakteri türleri tayin edilmis, topluluk yapıları ve bolluklarının zamansal degisimi belirlenmistir. Taksalar arasında Pelagibacteriacea?ya ait olan SAR11 kladının tüm derinlikler ve aylarda baskınlıgı gözlenmistir. Bu kladın üyeleri fonksiyonel olarak organik maddeyi oksitleyerek karbondioksit üreten heterotrofik bakterilerdir ve dolayısıyla biyojeokimyasal döngülerin remineralizasyon ayagında rol almaktadırlar. SAR11 kladının bollugu yıl boyunca %22 ve %64 arasında degisim göstermistir. SAR11 kladının ekotipleri olan Clade Ia ve Clade Ib ise derinlige baglı yayılım göstermektedirler. Clade Ia yüzey sularında baskınlık gösterirken Clade Ib?nin derin sularda komüniteye katkısı daha fazla olmaktadır. Bunun yanı sıra komünite yapısını belirleyen en önemli çevresel faktörler sıcaklık, nitrat, görünür oksijen kullanımı, sezon ve ısıklı tabaka derinligi olarak belirlenmistir. Sezonlar arasındaki filogenetik çesitlilik, belirgin olarak farklı bulunmustur. Bunun yanı sıra bakterilerin aktif metabolizmalarını tayin etmek için sezonluk olarak mRNA örneklemesi yapılmıs ve örnekler metatranskriptom yöntemi ile analiz edilmistir. Bu yöntem aracılıgı ile bakteriler tarafından gerçeklestirilen biyokimyasal reaksiyonların aktif ve inaktif oldukları dönemler saptanmıstır. Nitrifikasyonun ilk basamagı olan amonyak oksitilenmesi Kasım ayında oldukça yüksek bulunmustur. Ancak nitrifikasyonun ikinci basamagı olan nitritin nitrata oksitlenme sürecine ait olan belirteç genlere herhangi bir örnekde rastlanmamıstır. Sisteme yeni azot girdisi saglayan azot fiksasyonuna mRNA ifadelerinde rastlanmamıstır. Metatranskriptom yöntemine elde edilen bulgulara ek olarak nitrifikasyon ve azot fiksasyon süreçleri izotop yöntemi ile de her ay dört farklı derinlikten yapılan örneklemeler ile arastırılmıstır. Nitrifikasyonun sadece afotik bölgede gerçeklesmedigi görülmüstür. Azot fiksasyonu belirteç genlerine rastlanmadıgı halde izotop yöntemi ile yapılan çalısmada azot fiksasyonu tüm yıl boyunca ve tüm derinliklerde çok düsük de olsa tespit edilmistir. Azot döngüsüne ek olarak, metatranskriptom çalısması ile kısıtlı inorganik fosfat varlıgında aktive olan alkalin fosfataz?ın sezonluk degisimi de göstermistir. Buna göre, ortamda düsük fosfat konsantrasyonları gözlemlendiginde bakterilerin diger fosfor kaynaklarına yöneldigi gözlemlenmistir. Bunlara ek olarak denizdeki biyokimyasal döngüleri sayısal olarak temsil eden ve tahminleri direkt olarak ölçümlerle karsılastırılabilecek bir modelleme sistemi bölgeye uyarlanmıstır. Bu modelleme sistemi bir parametre tahmin algoritması ve proje kapsamında yapılan ölçüm verileri ile birlestirilerek modelde reaksiyon hızlarını kontrol eden parametrelerin tahmini yapılmıstır. Bu tahmin sonucunda ortaya çıkan nitrifikasyon hızları izotop yöntemi ile yapılan nitrifikasyon hızları ile karsılastırılmıstır. Bu karsılastırma reaksiyon hızları tahmini için modelleme sistemi ve parametre tahmini kullanımının zor olan izotop yöntemine alternatif bir yöntem olma potansiyelini göstermistir. Yapılan bir yıllık gözlemler, kullanılan izotop yöntemleri ve modelleme yaklasımı bölgedeki bilimsel bilgiye önemli katkılar saglamıstır. Bakteri topluluk yapıları Türkiye kıyılarında ilk defa kültür bagımsız yöntemlerle ortaya konmustur. Bunun yanı sıra izotop yöntemleri ve yapılan metatranscriptom çalısması bölgede azot fiksasyonunun baskın bir süreç olmadıgını ortaya koymustur. Biyojeokimyasal bir modelleme sistemi basarıyla bölgeye uyarlanmıstır.
Anahtar Kelime: biyojeokimya sayısal deniz modelleri metatranscriptom metagenom denizel bakteriler Akdeniz

Konular: Biyoloji Jeokimya ve Jeofizik Çevre Bilimleri Deniz ve Tatlı Su Biyolojisi
Erişim Türü: Erişime Açık
  • Agawin, N. S. R., Duarte, C. M., & Agustí, S. (1998). Growth and abundance of Synechococcus sp. in a Mediterranean Bay:seasonality and relationship with temperature. Marine Ecology Progress Series, 170, 45–53. https://doi.org/10.3354/meps170045
  • Levant Baseninde Nitrifikasyon ve Azot Fiksasyonu: Zaman Serisi Çalısması (Bildiri - Uluslararası Bildiri - Sözlü Sunum)
  • Arin, L., Moran, X. A. G., & Estrada, M. (2002). Phytoplankton size distribution and growth rates in the Alboran Sea ( SW Mediterranean ): short term variability related to mesoscale hydrodynamics. Journal of Plankton Research, 24(10), 1019–1033. https://doi.org/10.1093/plankt/24.10.1019
  • DENIZLERDEKI MIKROBIYAL DÖNGÜLERIN GENETIK YAKLASIMLAR KULLANILARAK ARASTIRILMASI (Bildiri - Ulusal Bildiri - Sözlü Sunum)
  • Azam, F., & Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5(12), 966–966. https://doi.org/10.1038/nrmicro1798
  • Kuzey Dogu Levant Baseni?nin Prokaryotik Biyolojik Çesitliliginin 16S rRNA Amplikon Dizileme Yöntemi ile Arastırılması- Öncül Sonuçlar (Bildiri - Ulusal Bildiri - Sözlü Sunum)
  • Berman-Frank, I., & Rahav, E. (2012). Nitrogen fixation as a source for new production in the Mediterranean Sea: a review. Life in the Mediterranean Sea: A Look at Habitat Changes, 199–226.
  • Investigating marine microbial reactions using novel approaches: Genetics, Biochemistry and Modeling (Bildiri - Ulusal Bildiri - Poster Sunum)
  • Béthoux, J. ., Morin, P., Chaumery, C., Connan, O., Gentili, B., & Ruiz-Pino, D. (1998). Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentrations with respect to environmental change. Marine Chemistry, 63(1–2), 155– 169. https://doi.org/10.1016/S0304-4203(98)00059-0
  • Béthoux, J. P., Morin, P., & Ruiz-Pino, D. P. (2002). Temporal trends in nutrient ratios: chemical evidence of Mediterranean ecosystem changes driven by human activity. Deep Sea Research Part II: Topical Studies in Oceanography, 49(11), 2007–2016. https://doi.org/10.1016/S0967-0645(02)00024-3
  • Boran, L. J. (2017). Natural And Human Induced Nutrient Impacts On Phytoplankton Communities In Mersin Bay, NE Mediterranean. Middle East Technical University. Braak, C. J. F. F., & Verdonschot, P. F. M. M. (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 57(3), 255–289. https://doi.org/10.1007/BF00877430
  • Brown, M. V., Lauro, F. M., Demaere, M. Z., Muir, L., Wilkins, D., Thomas, T., Cavicchioli, R. (2012). Global biogeography of SAR11 marine bacteria. Molecular Systems Biology, 8(595), 1–13. https://doi.org/10.1038/msb.2012.28
  • Bryant, J. A., Clemente, T. M., Viviani, D. A., Fong, A. A., Thomas, K. A., Kemp, P., DeLong, E. F. (2016). Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. MSystems, 1(3), e00024-16. https://doi.org/10.1128/mSystems.00024-16
  • Burchard, H., Bolding, K., Rippeth, T. P., Stips, A., Simpson, J. H., & Sündermann, J. (2002). Microstructure of turbulence in the northern North Sea: A comparative study of observations and model simulations. Journal of Sea Research, 47(3–4), 223–238. https://doi.org/10.1016/S1385-1101(02)00126-0
  • Butenschön, M., Clark, J., Aldridge, J. N., Icarus Allen, J., Artioli, Y., Blackford, J., … Torres, R. (2016). ERSEM 15.06: A generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels. Geoscientific Model Development, 9(4), 1293–1339. https://doi.org/10.5194/gmd-9-1293-2016
  • Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
  • Capone, D. G., Bronk, D. A., Mulholland, M. R., Carpenter, E. J., & Bange, H. W. (2008). Gaseous Nitrogen Compounds (NO, N2O, N2, NH3) in the Ocean. Nitrogen in the Marine Environment, 51–94. https://doi.org/10.1016/B978-0-12-372522-6.00002-5
  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Publishing Group, 7(5), 335–336. https://doi.org/10.1038/nmeth0510-335
  • Carlson, C. a, Bates, N. R., Ducklow, H. W., & Hansell, D. a. (1999). Estimations of bacterial respiration and growth efficiencies in the Ross Sea, Antarctica. . Aquat. Microb. Ecol., 19(3), 229–244. https://doi.org/10.3354/ame019229
  • Carniel, S., Vichi, M., & Sclavo, M. (2007). Sensitivity of a coupled physical-biological model to turbulence: High-frequency simulations in a northern Adriatic station. Chemistry and Ecology, 23(2), 157–175. https://doi.org/10.1080/02757540701197903
  • Chang, Q., Luan, Y., & Sun, F. (2011). Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny. BMC Bioinformatics, 12(1), 118. https://doi.org/10.1186/1471-2105-12-118
  • Cros, L., Fortuño, J. M., & Fortuño, J. M. (2002). Atlas of Northwestern Mediterranean Coccolithophores. Scientia Marina, 66(S1), 1–182. https://doi.org/10.3989/scimar.2002.66s11
  • D. M. Sigman, *,†, K. L. Casciotti, †, M. Andreani, ‡, C. Barford, §, M. Galanter, † and, & Böhlke⊥, J. K. (2001). A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. https://doi.org/10.1021/AC010088E
  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., … Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
  • Dore, J. E., Popp, B. N., Karl, D. M., & Sansone, F. J. (1998). A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature, 396(6706), 63–66. https://doi.org/10.1038/23921
  • Ediger, D., Tuǧrul, S., & Yilmaz, A. (2005). Vertical profiles of particulate organic matter and its relationship with chlorophyll-a in the upper layer of the NE Mediterranean Sea. Journal of Marine Systems, 55(3–4), 311–326. https://doi.org/10.1016/j.jmarsys.2004.09.003
  • Ediger, D., & Yilmaz, A. (1996). Characteristics of deep chlorphyll maximum in the Northeastern Mediterranean with respect to environmental conditions. Journal of Marine Systems, 9(3–4), 291–303. https://doi.org/10.1016/S0924-7963(96)00044-9
  • Estrada, M., Marrasé, C., Latasa, M., Berdalet, E., Delgado, M., & Riera, T. (1993). Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean. Marine Ecology Progress Series, 92(3), 289–300. Retrieved from http://www.jstor.org/stable/24832534
  • Fanuko, N., & Valcıc, M. (2009). Phytoplankton composition and biomass of the northern Adriatic lagoon of Stella Maris, Croatia. Acta Botanica Croatica, 68(1), 29–44.
  • Fernández-Pinos, M.-C., Casado, M., Caballero, G., Zinser, E. R., Dachs, J., & Piña, B. (2015). Clade-Specific Quantitative Analysis of Photosynthetic Gene Expression in Prochlorococcus. PLOS ONE, 10(8), e0133207. https://doi.org/10.1371/journal.pone.0133207
  • Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincon, J., Zabala, L. L., Jiao, N., … Martiny, A. C. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences, 110(24), 9824–9829. https://doi.org/10.1073/pnas.1307701110
  • Gačić, M., Civitarese, G., Eusebi Borzelli, G. L., Kovačević, V., Poulain, P. M., Theocharis, A., … Zarokanellos, N. (2011). On the relationship between the decadal oscillations of the northern Ionian Sea and the salinity distributions in the eastern Mediterranean. Journal of Geophysical Research: Oceans, 116(12), 1–9. https://doi.org/10.1029/2011JC007280
  • Gačić, M., Civitarese, G., Miserocchi, S., Cardin, V., Crise, A., & Mauri, E. (2002). The openocean convection in the Southern Adriatic: a controlling mechanism of the spring phytoplankton bloom. Continental Shelf Research, 22(14), 1897–1908. https://doi.org/10.1016/S0278-4343(02)00050-X
  • Garcia, N., Raimbault, P., Gouze, E., & Sandroni, V. (2006). Fixation de diazote et production primaire en Méditerranée occidentale. Comptes Rendus Biologies, 329(9), 742–750. https://doi.org/10.1016/j.crvi.2006.06.006
  • Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., & Field, K. G. (1990). Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345(6270), 60–63. https://doi.org/10.1038/345060a0
  • Goericke, R., & Repeta, D. (1993). Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical North Atlantic Ocean. Marine Ecology Progress Series, 101, 307–313. https://doi.org/10.3354/meps101307
  • Hagström, Å., et al. (1988). "Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagellates in the organic fluxes." Marine Ecology Progress Series 49: 171-178.
  • Herlemann, D. P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., & Andersson, A. F. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal, 5(10), 1571–1579. https://doi.org/10.1038/ismej.2011.41 Huertas, I. E., et al. (2012). "Atlantic forcing of the Mediterranean oligotrophy." Global Biogeochemical Cycles 26(2)
  • Ibello, V., Cantoni, C., Cozzi, S., & Civitarese, G. (2010). First basin-wide experimental results on N 2 fixation in the open Mediterranean Sea. Geophysical Research Letters, 37(3), n/an/ a. https://doi.org/10.1029/2009GL041635
  • Ignatiades, L., Gotsis-Skretas, O., Pagou, K., & Krasakopoulou, E. (2009). Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal east-west transect of the Mediterranean Sea. Journal of Plankton Research, 31(4), 411–428. https://doi.org/10.1093/plankt/fbn124
  • Ignatiades, L., Psarra, S., Zervakis, V., Pagou, K., Souvermezoglou, E., Assimakopoulou, G., & Gotsis-Skretas, O. (2002). Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). Journal of Marine Systems, 36(1–2), 11–28. https://doi.org/10.1016/S0924-7963(02)00132-X
  • Jari Oksanen, F. G. B., Michael Friendly, R. K., Pierre Legendre, Dan McGlinn, P. R., Minchin, R. B. O’Hara, G. L., Simpson, Peter Solymos, M. H. H., Stevens, E. S. and H., & Wagner. (2007). vegan: Community Ecology Package. R package version 2.4-5.
  • Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie Und Physiologie Der Pflanzen, 167(2), 191–194. https://doi.org/10.1016/S0015- 3796(17)30778-3
  • Jodłowska Sabina, & Adam, L. (2011). The Comparison of Spectrophotometric Method and High-Performance Liquid Chromatography in Photosynthetic Pigments Analysis. OnLine Journal of Biological Sciences, 11(2), 63–69. https://doi.org/10.3844/ojbsci.2011.63.69 Karydis, M. and D. Kitsiou (2012). "Eutrophication and environmental policy in the Mediterranean Sea: a review." Environ Monit Assess 184(8): 4931-4984.
  • Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
  • Kirk, J. T. O. (1994), Light and Photosynthesis in Aquatic Ecosystems, Cambridge Univ. Press, New York.
  • Koçak, M., Kubilay, N., Tuğrul, S., & Mihalopoulos, N. (2010). Atmospheric nutrient inputs to the northern levantine basin from a long-term observation: sources and comparison with riverine inputs. Biogeosciences, 7(12), 4037–4050. https://doi.org/10.5194/bg-7-4037- 2010
  • Koçak, M., Nimmo, M., Kubilay, N., & Herut, B. (2004). Spatio-temporal aerosol trace metal concentrations and sources in the Levantine Basin of the Eastern Mediterranean. Atmospheric Environment, 38(14), 2133–2144. https://doi.org/10.1016/J.ATMOSENV.2004.01.020
  • Kress, N., & Herut, B. (2001a). Spatial and seasonal evolution of dissolved oxygen and nutrients in the Southern Levantine Basin (Eastern Mediterranean Sea): Chemical characterization of the water masses and inferences on the N : P ratios. Deep-Sea Research Part I: Oceanographic Research Papers, 48(11), 2347–2372. https://doi.org/10.1016/S0967-0637(01)00022-X
  • Kress, N., & Herut, B. (2001b). Spatial and seasonal evolution of dissolved oxygen and nutrients in the Southern Levantine Basin (Eastern Mediterranean Sea): chemical characterization of the water masses and inferences on the N:P ratios. Deep Sea Research Part I: Oceanographic Research Papers, 48(11), 2347–2372. https://doi.org/10.1016/S0967-0637(01)00022-X
  • Krom, M. D., Emeis, K.-C., & Van Cappellen, P. (2010). Why is the Eastern Mediterranean phosphorus limited? Progress in Oceanography, 85(3–4), 236–244. https://doi.org/10.1016/j.pocean.2010.03.003
  • Krom, M. D., Kress, N., Brenner, S., & Gordon, L. I. (1991). Phosphorus Limitation of Primary Productivity in the Eastern Mediterranean-Sea. Limnology and Oceanography, 36(3), 424–432. https://doi.org/10.4319/lo.1991.36.3.0424
  • Krom, M. D., Woodward, E. M. S., Herut, B., Kress, N., & Carbo, P. (2005). Nutrient cycling in the south east Levantine basin of the eastern Mediterranean : Results from a phosphorus starved system. Deep-Sea Research Part II, 52, 2879–2896. https://doi.org/10.1016/j.dsr2.2005.08.009
  • Krom, M. D., Woodward, E. M. S., Herut, B., Kress, N., Carbo, P., Mantoura, R. F. C., … Zodiatis, G. (2005). Nutrient cycling in the south east Levantine basin of the eastern Mediterranean: Results from a phosphorus starved system. Deep Sea Research Part II: Topical Studies in Oceanography, 52(22–23), 2879–2896. https://doi.org/10.1016/j.dsr2.2005.08.009
  • Kudela, R., Pitcher, G., Probyn, T., Figueiras, F., Moita, T., & Trainer, V. (2005). Harmful Algal Blooms in Coastal Upwelling Systems. Oceanography, 18(2), 184–197. https://doi.org/10.5670/oceanog.2005.53
  • Kumari, B. (2005). Comparison of High Performance Liquid. Society, 33(4).
  • Lascaratos, A., Roether, W., Nittis, K., & Klein, B. (1999). Recent changes in deep water formation and spreading in the Eastern Mediterranean Sea: A review. Progress in Oceanography, 44(1–3), 5–36. https://doi.org/10.1016/S0079-6611(99)00019-1
  • Lemmen, C., et al. (2018). "Modular System for Shelves and Coasts (MOSSCO v1.0) – a flexible and multi-component framework for coupled coastal ocean ecosystem modelling." Geoscientific Model Development 11(3): 915-935.
  • Li, W. K. W. (2002). Macroecological patterns of phytoplankton in th enorthwestern North Atlantic Ocean. Nature, 419(September), 154–157. https://doi.org/10.1038/nature00983.1.
  • Li, W. K. W., Zohary, T., Yacobi, Y. Z., & Wood, A. M. (1993). Ultraphytoplankton in the eastern Mediterranean Sea - Towards deriving phytoplankton biomass from flow cytometric measurements of abundance, fluorescence and light scatter. Marine Ecology Progress Series, 102(1–2), 79–88. https://doi.org/10.3354/meps102079
  • Libes, S. 2009. Introduction to Marine Biogeochemistry (2nd edition). Academic Press. pp 561-608
  • Loureiro, S., Jauzein, C., Garcés, E., Collos, Y., Camp, J., & Vaqué, D. (2009). The significance of organic nutrients in the nutrition of Pseudo-nitzschia delicatissima (Bacillariophyceae). Journal of Plankton Research, 31(4), 399–410. https://doi.org/10.1093/plankt/fbn122
  • Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., & Knight, R. (2011). UniFrac: an effective distance metric for microbial community comparison. The ISME Journal, 5(2), 169–72. https://doi.org/10.1038/ismej.2010.133
  • Magazzu, G., & Decembrini, F. (1995). Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: A review. Aquatic Microbial Ecology, 9(1), 97–104. https://doi.org/10.3354/ame009097
  • Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S., Crise, A., Gacic, M., … Triantafyllou, G. (2014). Physical forcing and physical/biochemical variability of the Mediterranean Sea: A review of unresolved issues and directions for future research. Ocean Science, 10(3), 281–322. https://doi.org/10.5194/os-10-281-2014
  • Malanotte-Rizzoli, P., & Hecht, A. (1988). Large-scale properties of the eastern Mediterranean: a review. Oceanologica Acta, 11(4), 323–335. https://doi.org/10.1016/S0967- 0645(99)00020-X
  • Marty, J.-C., & Chiavérini, J. (2002). Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 49(11), 2017–2030. https://doi.org/10.1016/S0967-0645(02)00025-5
  • Marty, J. C., Chiavérini, J., Pizay, M. D., & Avril, B. (2002). Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991-1999). Deep-Sea Research Part II: Topical Studies in Oceanography, 49(11), 1965–1985. https://doi.org/10.1016/S0967-0645(02)00022-X
  • Menden-Deuer, S., & Lessard, E. J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography, 45(3), 569–579. https://doi.org/10.4319/lo.2000.45.3.0569
  • Michelou, V. K., Lomas, M. W., & Kirchman, D. L. (2011). Phosphate and adenosine-5’- triphosphate uptake by cyanobacteria and heterotrophic bacteria in the Sargasso Sea. Limnology and Oceanography, 56(1), 323–332. https://doi.org/10.4319/lo.2011.56.1.0323
  • Montoya, J. P., Holl, C. M., Zehr, J. P., Hansen, A., Villareal, T. A., & Capone, D. G. (2004). High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature, 430(7003), 1027–1032. https://doi.org/10.1038/nature02824
  • Montoya, J. P., Voss, M., Kahler, P., & Capone, D. G. (1996). A Simple, High-Precision, High- Sensitivity Tracer Assay for N(inf2) Fixation. Applied and Environmental Microbiology, 62(3), 986–93. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16535283
  • Moore, L. R., Post, A. F., Rocap, G., & Chisholm, S. W. (2002). Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography, 47(4), 989–996. https://doi.org/10.4319/lo.2002.47.4.0989
  • Moore, L. R., Rocap, G., & Chisholm, S. W. (1998). Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature, 393(6684), 464–467. https://doi.org/10.1038/30965
  • Morris, R. M., Rappé, M. S., Connon, S. A., Vergin, K. L., Siebold, W. A., Carlson, C. A., & Giovannoni, S. J. (2002). SAR11 clade dominates ocean surface bacterioplankton communities. Nature, 420(6917), 806–810. https://doi.org/10.1038/nature01240
  • Mou, X., Hodson, R. E., & Moran, M. A. (2007). Bacterioplankton assemblages transforming dissolved organic compounds in coastal seawater. Environmental Microbiology, 9(8), 2025–2037. https://doi.org/10.1111/j.1462-2920.2007.01318.x
  • Moutin, T., & Raimbault, P. (2002). Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). Journal of Marine Systems, 33–34, 273–288. https://doi.org/10.1016/S0924-7963(02)00062-3
  • Moutin, T., Thingstad, T. F., Van Wambeke, F., Marie, D., Slawyk, G., Raimbault, P., & Claustre, H. (2002). Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus ? Limnology and Oceanography, 47(5), 1562–1567. https://doi.org/10.4319/lo.2002.47.5.1562
  • Ni, Y., Li, J., & Panagiotou, G. (2016). COMAN: a web server for comprehensive metatranscriptomics analysis. BMC Genomics, 17(1), 622. https://doi.org/10.1186/s12864-016-2964-z
  • Omnes, P., Slawyk, G., Garcia, N., & Bonin, P. (n.d.). Evidence of denitrification and nitrate ammonification in the River Rhone plume (northwestern Mediterranean Sea). Marine Ecology Progress Series. Inter-Research Science Center. https://doi.org/10.2307/24857211
  • Paliy, O., & Shankar, V. (2016). Application of multivariate statistical techniques in microbial ecology. Molecular Ecology, 25(5), 1032–1057. https://doi.org/10.1111/mec.13536
  • Partensky, F., Blanchot, J., & Vaulot, D. (1999). Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters : a review. Retrieved from http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers15-02/010019788.pdf
  • Partensky, F., Hess, W. R., & Vaulot, D. (1999). Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol.Mol Biol.Rev., 63(1), 106–127. https://doi.org/doi:1092-2172/99/$04.00
  • Paz, G., Douek, J., Mo, C., Goren, M., & Rinkevich, B. (2003). Genetic structure of Botryllus schlosseri (Tunicata) populations from the Mediterranean coast of Israel. Marine Ecology Progress Series, 250, 153–162. https://doi.org/10.3354/meps250153
  • Petihakis, G., Triantafyllou, G., Korres, G., Pollani, a., & Hoteit, I. (2006). Eastern Mediterranean biogeochemical flux model: simulations of the pelagic ecosystem. Ocean Science Discussions, 3(4), 1349–1398. https://doi.org/10.5194/osd-3-1349-2006
  • Popp, B. N., Sansone, F. J., Rust, T. M., & Merritt, D. A. (1995). Determination of Concentration and Carbon Isotopic Composition of Dissolved Methane in Sediments and Nearshore Waters. Analytical Chemistry, 67(2), 405–411. https://doi.org/10.1021/ac00098a028
  • Powley, H. R., Krom, M. D., & Van Cappellen, P. (2017). Understanding the unique biogeochemistry of the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model. Global Biogeochemical Cycles. https://doi.org/10.1002/2017GB005648
  • Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – Approximately Maximum- Likelihood Trees for Large Alignments. PLoS ONE, 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490
  • Pujo-Pay, M., Conan, P., Oriol, L., Cornet-Barthaux, V., Falco, C., Ghiglione, J. F., … Prieur, L. (2011). Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences, 8(4), 883–899. https://doi.org/10.5194/bg- 8-883-2011
  • Quero, G. M., & Luna, G. M. (2017). Surfing and dining on the “plastisphere”: Microbial life on plastic marine debris. Advances in Oceanography and Limnology, 8(2), 199–207. https://doi.org/10.4081/aiol.2017.7211
  • Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. ., Brzezinski, M. ., DeMaster, D. ., … Quéguiner, B. (2000). A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26(4), 317–365. https://doi.org/10.1016/S0921-8181(00)00052-7
  • Rahav, E., Herut, B., Levi, a., Mulholland, M. R., & Berman-Frank, I. (2013). Springtime contribution of dinitrogen fixation to primary production across the Mediterranean Sea. Ocean Science, 9(3), 489–498. https://doi.org/10.5194/os-9-489-2013
  • Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62(2), 142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x
  • Rasigraf, O., Schmitt, J., Jetten, M. S. M., & Lüke, C. (2017). Metagenomic potential for and diversity of N- - cycle driving microorganisms in the Bothnian Sea sediment, (February), 1–13. https://doi.org/10.1002/mbo3.475
  • Redfield, A.C., Ketchup B.H., Richards F.A., 1963. The influence of organisms on the comosition of sea-water. In N.M. Hill (ed.), The sea, vol. 2, Wiley: 26-77
  • Rees, A. P., Law, C. S., & Woodward, E. M. S. (2006). High rates of nitrogen fixation during an in-situ phosphate release experiment in the Eastern Mediterranean Sea. Geophysical Research Letters, 33(10), n/a-n/a. https://doi.org/10.1029/2006GL025791
  • Riegman, R., Stolte, W., Noordeloos, A. A. M., & Slezak, D. (2000). Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity of emiliania huxleyi (prymnesiophyceae) during growth under n and p limitation in continuous cultures. Journal of Phycology, 36(1), 87– 96. https://doi.org/10.1046/j.1529-8817.2000.99023.x
  • Sandroni, V., Raimbault, P., Migon, C., Garcia, N., & Gouze, E. (2007). Dry atmospheric deposition and diazotrophy as sources of new nitrogen to northwestern Mediterranean oligotrophic surface waters. Deep Sea Research Part I: Oceanographic Research Papers, 54(11), 1859–1870. https://doi.org/10.1016/j.dsr.2007.08.004
  • Schweiger, B., Hansen, H. P., & Bange, H. W. (2007). A time series of hydroxylamine ( NH 2 OH ) in the southwestern Baltic Sea, 34(November), 1–5. https://doi.org/10.1029/2007GL031086
  • Sebastián, M., Pitta, P., González, J. M., Thingstad, T. F., & Gasol, J. M. (2012). Bacterioplankton groups involved in the uptake of phosphate and dissolved organic phosphorus in a mesocosm experiment with P-starved Mediterranean waters. Environmental Microbiology, 14(9), 2334–2347. https://doi.org/10.1111/j.1462- 2920.2012.02772.x
  • Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera D’Alcala, M., Vaque, D., & Zingone, A. (2010). Plankton in the open mediterranean Sea: A review. Biogeosciences, 7(5), 1543–1586. https://doi.org/10.5194/bg-7-1543-2010
  • Socal, G., Boldrin, A., Bianchi, F., Civitarese, G., De Lazzari, A., Rabitti, S., … Turchetto, M. M. (1999). Nutrient, particulate matter and phytoplankton variability in the photic layer of the Otranto strait. Journal of Marine Systems, 20(1–4), 381–398. https://doi.org/10.1016/S0924-7963(98)00075-X
  • Strickland, J. D. H., & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. A Practical Handbook of Seawater Analysis, 167, 185. https://doi.org/10.1002/iroh.19700550118
  • Strokal M., Kroeze C., 2012, Nitrogen and phosphorus inputs to the Black Sea in 1970–2050, 13: 179. https://doi.org/10.1007/s10113-012-0328-z
  • Talarmin, A., Van Wambeke, F., Lebaron, P., & Moutin, T. (2015). Vertical partitioning of phosphate uptake among picoplankton groups in the low Pi Mediterranean Sea. Biogeosciences, 12(4), 1237–1247. https://doi.org/10.5194/bg-12-1237-2015
  • Tanaka, T., Zohary, T., Krom, M. D., Law, C. S., Pitta, P., Psarra, S., … Zodiatis, G. (2007). Microbial community structure and function in the Levantine Basin of the eastern Mediterranean. Deep Sea Research Part I: Oceanographic Research Papers, 54(10), 1721–1743. https://doi.org/10.1016/j.dsr.2007.06.008
  • Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., & Civitarese, G. (2013). The Mediterranean Sea system: A review and an introduction to the special issue. Ocean Science, 9(5), 789–803. https://doi.org/10.5194/os-9-789-2013
  • Thingstad, T. F., Krom, M. D., Mantoura, R. F. C., Flaten, G. A. F., Groom, S., Herut, B., … Zohary, T. (2005). Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science (New York, N.Y.), 309(5737), 1068–71. https://doi.org/10.1126/science.1112632
  • Thingstad, T. F., Zweifel, U. L., & Rassoulzadegan, F. (1998). P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnology and Oceanography, 43(1), 88–94. https://doi.org/10.4319/lo.1998.43.1.0088
  • Turley, C. M., Bianchi, M., Christaki, U., Conan, P., Harris, J. R. W., Psarra, S., … Van Wambeke, F. (2000). Relationship between primary producers and bacteria in an oligotrophic sea - The Mediterranean and biogeochemical implications. Marine Ecology Progress Series, 193, 11–18. https://doi.org/10.3354/meps193011
  • Tyrrell, T., & Merico, A. (2004). Emiliania huxleyi: bloom observations and the conditions that induce them. In Coccolithophores (pp. 75–97). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_4
  • Umlauf, L., Burchard, H., & Bolding, K. (2012). GOTM-Sourcecode and Test Case Documentation. Software Manual, 346. Retrieved from http://www.gotm.net/pages/documentation/manual/stable/pdf/a4.pdf
  • UNESCO. (1986). Progress on oceanographic tables and standards 1983–1986: work and recommendations of the UNESCO/SCOR/ICES/IAPSO Joint Panel.
  • Uysal, Z. (2006). Vertical distribution of marine cyanobacteria Synechococcus spp. in the Black, Marmara, Aegean, and eastern Mediterranean seas. Deep Sea Research Part II: Topical Studies in Oceanography, 53(17–19), 1976–1987. https://doi.org/10.1016/j.dsr2.2006.03.016
  • Uysal, Z., & Köksalan, I. (2006). The annual cycle of Synechococcus (cyanobacteria) in the northern Levantine Basin shelf waters (Eastern Mediterranean). Marine Ecology, 27(3), 187–197. https://doi.org/10.1111/j.1439-0485.2006.00105.x
  • Van Cappellen, P., Powley, H. R., Emeis, K. C., & Krom, M. D. (2014). A biogeochemical model for phosphorus and nitrogen cycling in the Eastern Mediterranean Sea: Part 1: Model development, initialization and sensitivity. Journal of Marine Systems, 139, 460–471. https://doi.org/10.1016/j.jmarsys.2014.08.016
  • Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A., & Knight, R. (2013). EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience, 2(1), 16. https://doi.org/10.1186/2047-217X-2-16
  • Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., & Jean-Claude, M. (2001). Phytoplankton pigment distribution in relation to upper Francesca Claustre For the whole Tchl a concentration mg estimated production value being mg m and the highest picophytoplankton contribution of Tchl a •. gyres by low Tchl a concentrations and. Journal of Geophysical Research, 106, 939–956. https://doi.org/10.1029/1999JC000308
  • Wang, X., Hu, M., Xia, Y., Wen, X., & Ding, K. (2012). Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in china. Applied and Environmental Microbiology, 78(19), 7042–7047. https://doi.org/10.1128/AEM.01617-12
  • Ward, B. B. (1996). Nitrification and denitrification: Probing the nitrogen cycle in aquatic environments. Microbial Ecology, 32(3), 247–261. https://doi.org/10.1007/BF00183061
  • Ward, B. B. (2000). Nitrification and the marine nitrogen cycle. Microbial Ecology of the Oceans, 427–453.
  • Wassmann, P., Ypma, J. E., & Tselepides, A. (2000). Vertical flux of faecal pellets and microplankton on the shelf of the oligotrophic Cretan Sea (NE Mediterranean Sea). Progress in Oceanography, 46(2–4), 241–258. https://doi.org/10.1016/S0079- 6611(00)00021-5
  • Waterbury, J. B., Watson, S. W., Guillard, R. R. L., & Brand, L. E. (1979). Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature, 277(5694), 293–294. https://doi.org/10.1038/277293a0
  • Weiss, R. F. (1970). The solubility of nitrogen, oxygen and argon in water and seawater. Deep- Sea Research, (17), 721–735.
  • Werner, J. J., Koren, O., Hugenholtz, P., DeSantis, T. Z., Walters, W. A., Caporaso, J. G., … Ley, R. E. (2012). Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. The ISME Journal, 6(1), 94–103. https://doi.org/10.1038/ismej.2011.82
  • Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences , 95(12), 6578–6583. Retrieved from http://www.pnas.org/content/95/12/6578.abstract
  • Yacobi, Y. Z., Zohary, T., Kress, N., Hecht, A., Robarts, R. D., Waiser, M., … Li, W. K. W. (1995). Chlorophyll distribution throughout the southeastern Mediterranean in relation to the physical structure of the water mass. Journal of Marine Systems, 6(3), 179–190. https://doi.org/10.1016/0924-7963(94)00028-A
  • Yakushev, E. V., Kuznetsov, I. S., Podymov, O. I., Burchard, H., Neumann, T., & Pollehne, F. (2011). Modeling the influence of oxygenated inflows on the biogeochemical structure of the Gotland Sea, central Baltic Sea: Changes in the distribution of manganese. Computers and Geosciences, 37(4), 398–409. https://doi.org/10.1016/j.cageo.2011.01.001
  • Yalçın B., Artüz M. L., Pavlidou A., Çubuk S., Dassenakis M., 2017, Nutrient dynamics and eutrophication in the Sea of Marmara: Data from recent oceanographic research, Science of The Total Environment, Volumes 601–602, p 405-424, https://doi.org/10.1016/j.scitotenv.2017.05.179.
  • Yilmaz, A., & Tugrul, S. (1998). The effect of cold- and warm-core eddies on the distribution and stoichiometry of dissolved nutrients in the northeastern Mediterranean. Journal of Marine Systems, 16(3–4), 253–268. https://doi.org/10.1016/S0924-7963(97)00022-5
  • Yogev, T., Rahav, E., Bar-Zeev, E., Man-Aharonovich, D., Stambler, N., Kress, N., … Berman- Frank, I. (2011). Is dinitrogen fixation significant in the Levantine Basin, East Mediterranean Sea? Environmental Microbiology, 13(4), 854–71. https://doi.org/10.1111/j.1462-2920.2010.02402.x
  • Zafiriou, O. ., Blough, N. ., Micinski, E., Dister, B., Kieber, D., & Moffett, J. (1990). Molecular probe systems for reactive transients in natural waters. Marine Chemistry, 30, 45–70. https://doi.org/10.1016/0304-4203(90)90061-G
  • Zeev, E. B., et al. (2008). "Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean Sea." ISME J 2(9): 911-923.
  • Zenetos, A.; Siokou-Frangou, I.; Gotsis-Skretas, O.; Groom, S. (2002). Seas around Europe: the Mediterranean Sea: blue oxygen-rich, nutrient-poor waters. Europe's biodiversity: biogeographical regions and seas. European Environment Agency: Copenhagen. pp 22.
  • Zohary, T., Herut, B., Krom, M. D., Fauzi, R., Pitta, P., Psarra, S., … Malcolm, E. (2005). Plimited bacteria but N and P co-limited phytoplankton in the Eastern Mediterranean - A microcosm experiment. Deep-Sea Research Part II: Topical Studies in Oceanography, 52(22–23), 3011–3023. https://doi.org/10.1016/j.dsr2.2005.08.011
APA SALİHOĞLU B, TUĞRUL S, IBELLO V, ÖREK H, KARAHAN A (2018). Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. , 1 - 198.
Chicago SALİHOĞLU Barış,TUĞRUL Süleyman,IBELLO Valeria,ÖREK Hasan,KARAHAN Arzu Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. (2018): 1 - 198.
MLA SALİHOĞLU Barış,TUĞRUL Süleyman,IBELLO Valeria,ÖREK Hasan,KARAHAN Arzu Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. , 2018, ss.1 - 198.
AMA SALİHOĞLU B,TUĞRUL S,IBELLO V,ÖREK H,KARAHAN A Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. . 2018; 1 - 198.
Vancouver SALİHOĞLU B,TUĞRUL S,IBELLO V,ÖREK H,KARAHAN A Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. . 2018; 1 - 198.
IEEE SALİHOĞLU B,TUĞRUL S,IBELLO V,ÖREK H,KARAHAN A "Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme." , ss.1 - 198, 2018.
ISNAD SALİHOĞLU, Barış vd. "Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme". (2018), 1-198.
APA SALİHOĞLU B, TUĞRUL S, IBELLO V, ÖREK H, KARAHAN A (2018). Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. , 1 - 198.
Chicago SALİHOĞLU Barış,TUĞRUL Süleyman,IBELLO Valeria,ÖREK Hasan,KARAHAN Arzu Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. (2018): 1 - 198.
MLA SALİHOĞLU Barış,TUĞRUL Süleyman,IBELLO Valeria,ÖREK Hasan,KARAHAN Arzu Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. , 2018, ss.1 - 198.
AMA SALİHOĞLU B,TUĞRUL S,IBELLO V,ÖREK H,KARAHAN A Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. . 2018; 1 - 198.
Vancouver SALİHOĞLU B,TUĞRUL S,IBELLO V,ÖREK H,KARAHAN A Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme. . 2018; 1 - 198.
IEEE SALİHOĞLU B,TUĞRUL S,IBELLO V,ÖREK H,KARAHAN A "Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme." , ss.1 - 198, 2018.
ISNAD SALİHOĞLU, Barış vd. "Denizlerdeki Mikrobiyal Reaksiyonların Yeni Yaklaşımlar Kullanılarak Araştırılması: Genetik, Biyojeokimya ve Modelleme". (2018), 1-198.