Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi

5 3

Proje Grubu: MAG Sayfa Sayısı: 0 Proje No: 315M018 Proje Bitiş Tarihi: 01.09.2018 Metin Dili: Türkçe İndeks Tarihi: 20-03-2020

Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi

Öz:
Elektro-eğirme yöntemi günümüz teknolojisinin geliştirilmesinde önemli potansiyele sahip olan yüksek boy/çap oranındaki nanofiberlerinin üretiminde kullanılan oldukça verimli bir yöntemdir. Üretilen fiberlerin nano boyutta olması ve yapıya eklenen katkı malzemesi ile nano düzeyde etkileşime geçmesi kompozit nanofiberlerinin gelecek vaat eden konulardan biri olmasını sağlamaktadır. Bu çalışmada elektro-eğirme yönteminde kullanılan proses parametrelerinin optimize edilerek düzgün Naylon-6 (PA6) nanofiber üretiminin gerçekleştirilmesi ve Haloysit nanotüp (HNT) katkılı PA6 nanofiberlerinin çoklu fonksiyonel özelliklerinin geliştirilmesi amaçlanmıştır. Öncelikle elektro-eğirme parametrelerinden çözelti türü ve konsantrasyonu, elektrik potansiyeli, besleme debisi ve toplama uzaklığı optimizasyonları katkısız PA6 kullanılarak yapılmış ve katkısız fiberlerinin üretiminde seçilen optimum parametreler göz önünde bulundurularak HNT katkılı kompozitler üretilmiştir. HNT katkı miktarının belirlenmesi için ağırlıkça % 1, 2, 4, 6 ve 8 modifiye edilmiş ve edilmemiş HNT içeren kompozitler başarıyla hazırlanarak SEM, TGA, DSC analizleri ve çekme testi ile karakterize edilmiştir. Üretilen nanofiberler termal ve mekanik özellikleri bakımından karşılaştırıldığında, %1 m-HNT eklenmesiyle kompozitlerin çekme dayanımı iyileştirilmiş ancak termal özelliklerinde önemli bir değişim görülmemiştir. Tüm bunlara ek olarak, katkısız, %1 ve 8 modifiye edilmiş HNT katkılı olarak üretilen nanofiberler uçuculukları birbirinden farklı olan HCl, aseton, toluen ve su buharına maruz bırakılarak kimyasal buhara dayanım özellikleri bakımından karakterize edilmiştir. Deneyler sonucunda morfolojik yapıları değişmiş, termal ve mekanik özelliklerinde düşüş görülmüştür. Ancak %1 m-HNT katkısıyla bahsedilen düşüşler bir miktar engellenmiştir. Son olarak basınçlı kalıplama yöntemiyle üretilen filmlerin LOI değeri %27 O2 iken elektroeğirme ile üretilen filmlerin LOI değeri %31 O2 olarak tespit edilmiştir. Bu da üretilen fiberlerin yanmayı geciktirici özellikler üzerine olumlu etkisi olduğunu göstermektedir.
Anahtar Kelime: haloysit nanotüp poliamid-6 nanokompozit nanofiber Elektro-eğirme yöntemi

Konular: Mühendislik, Kimya
Erişim Türü: Erişime Açık
  • Abacha, N., Kubouchi, M. ve Sakai, T. (2009), “Diffusion behavior of water in polyamide 6 organoclay nanocomposites”, Express Polymer Letters, Vol. 3 No. 4, ss. 245–255.
  • Abastari, Sakai, T., Sembokuya, H., Kubouchi, M. ve Tsuda, K. (2007), “Study on permeation behavior and chemical degradation of PA66 in acid solution”, Polymer Degradation and Stability, Vol. 92 No. 3, ss. 379–388.
  • Ahn, Y.C., Park, S.K., Kim, G.T., Hwang, Y.J., Lee, C.G., Shin, H.S. ve Lee, J.K. (2006), “Development of high efficiency nanofilters made of nanofibers”, Current Applied Physics, Vol. 6 No. 6, ss. 1030–1035.
  • Anda, A.R. de. (2014), “Influence of the solvent sorption, additivation , and chemical modification on the molecular mobility dynamics of Polyamide 6,6 amorphous phase and its consequences on the tensile and impact strength properties of this polymer Agustin Rios de Anda To c”.
  • Boulton, J. ve Jackson, D.L.. (1943), “The Fluidity of Nylon Solutions in m-Cresol: Measurement of Chemical Damage in Nylon Textiles”, The Journal Of The Society Of Dyers And Colourists, Vol. 59, ss. 21–26.
  • Cai, N., Dai, Q., Wang, Z., Luo, X., Xue, Y. ve Yu, F. (2015), “Toughening of electrospun poly(llactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes”, Journal of Materials Science, Vol. 50 No. 3, ss. 1435–1445.
  • Carli, L.N., Daitx, T.S., Soares, G. V., Crespo, J.S. ve Mauler, R.S. (2014), “The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites”, Applied Clay Science, Elsevier B.V., Vol. 87, ss. 311–319.
  • Cheng, Z.-L., Qin, X.-X., Liu, Z. ve Qin, D.-Z. (2017), “Electrospinning preparation and mechanical properties of PVA/HNTs composite nanofibers”, Polymers for Advanced Technologies, Vol. 28 No. 6, ss. 768–774.
  • Cho, D., Zhmayev, E. ve Joo, Y.L. (2011), “Structural studies of electrospun nylon 6 fibers from solution and melt”, Polymer, Elsevier Ltd, Vol. 52 No. 20, ss. 4600–4609.
  • Choi, B.H., Zhou, Z., Chudnovsky, A., Stivala, S.S., Sehanobish, K. ve Bosnyak, C.P. (2005), “Fracture initiation associated with chemical degradation: Observation and modeling”, International Journal of Solids and Structures, Vol. 42 No. 2, ss. 681–695.
  • Deitzel, J., Kleinmeyer, J., Harris, D. ve Beck Tan, N. (2001), “The effect of processing variables on the morphology of electrospun nanofibers and textiles”, Polymer, Vol. 42 No. 1, ss. 261– 272.
  • Ero-Phillips, O., Jenkins, M. ve Stamboulis, A. (2012), “Tailoring Crystallinity of Electrospun Plla Fibres by Control of Electrospinning Parameters”, Polymers, Vol. 4 No. 3, ss. 1331–1348.
  • Fallahi, D., Rafizadeh, M., Mohammadi, N. ve Vahidi, B. (2008), “Effect of applied voltage on jet electric current and flow rate in electrospinning of polyacrylonitrile solutions”, Polymer International, Vol. 57 No. 12, ss. 1363–1368.
  • Fowkes, F.M. (1964), “Dispersion force contributions to surface and interfacial tensions, contact angles, and heats of immersion”, Contact Angle, Wettability, and Adhesion, C. 43, ss. 99– 111.
  • Ghanbari, M., Emadzadeh, D., Lau, W.J., Riazi, H., Almasi, D. ve Ismail, A.F. (2016), “Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates”, Desalination, Elsevier B.V., Vol. 377, ss. 152–162.
  • Gonçalves, E.S., Poulsen, L. ve Ogilby, P.R. (2007), “Mechanism of the temperature-dependent degradation of polyamide 66 films exposed to water”, Polymer Degradation and Stability, Vol. 92 No. 11, ss. 1977–1985.
  • Guo, B., Zou, Q., Lei, Y. ve Jia, D. (2009), “Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites”, Polymer Journal, Vol. 41 No. 10, ss. 835–842.
  • Gupta, V.. ve Kothari, V.. (1997), Manufactured Fibre Technology, Chapman & Hall.
  • Heikkilä, P. ve Harlin, A. (2008), “Parameter study of electrospinning of polyamide-6”, European Polymer Journal, Vol. 44 No. 10, ss. 3067–3079.
  • Hekmati, A.H., Rashidi, A., Ghazisaeidi, R. ve Drean, J.-Y. (2013), “Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs”, Textile Research Journal, Vol. 83, ss. 1452–1466.
  • Huan, S., Liu, G., Han, G., Cheng, W., Fu, Z., Wu, Q. ve Wang, Q. (2015), “Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers”, Materials, Vol. 8 No. 5, ss. 2718–2734.
  • Jiyong, H., Yinda, Z., Hele, Z. ve Yuanyuan, G. (y.y.). “Mixed effect of main electrospinning parameters on the β -phase crystallinity of electrospun PVDF nano fi bers”, IOP Publishing.
  • Jose, M. V., Steinert, B.W., Thomas, V., Dean, D.R., Abdalla, M.A., Price, G. ve Janowski, G.M. (2007), “Morphology and mechanical properties of Nylon 6/MWNT nanofibers”, Polymer, Vol. 48 No. 4, ss. 1096–1104.
  • Kamble, R., Ghag, M., Gaikawad, S. ve Panda, B.K. (2012), “Review article halloysite nanotubes and applications : A review”, Journal of Advanced Scientific Research, Vol. 3 No. 2, ss. 25– 29.
  • Koombhongse, S., Liu, W. ve Reneker, D.H. (2001), “Flat polymer ribbons and other shapes by electrospinning”, Journal of Polymer Science, Part B: Polymer Physics, Vol. 39 No. 21, ss. 2598–2606.
  • Koski, A., Yim, K. ve Shivkumar, S. (2004), “Effect of molecular weight on fibrous PVA produced by electrospinning”, Materials Letters, Vol. 58 No. 3–4, ss. 493–497.
  • Kuo, Y.-Y., Bruno, F.C. ve Wang, J. (2014), “Filtration Performance Against Nanoparticles by Electrospun Nylon-6 Media Containing Ultrathin Nanofibers”, Aerosol Science and Technology, Vol. 48 No. 12, ss. 1332–1344.
  • Lee, K.H., Kim, H.Y., Khil, M.S., Ra, Y.M. ve Lee, D.R. (2003), “Characterization of nanostructured poly(ε-caprolactone) nonwoven mats via electrospinning”, Polymer, Vol. 44 No. 4, ss. 1287–1294.
  • Li, L., Bellan, L.M., Craighead, H.G. ve Frey, M.W. (2006), “Formation and properties of nylon-6 and nylon-6/montmorillonite composite nanofibers”, Polymer, Vol. 47 No. 17, ss. 6208– 6217.
  • Li, Q., Gao, D., Wei, Q., Ge, M., Liu, W., Wang, L. ve Hu, K. (2010), “Thermal stability and crystalline of electrospun polyamide 6/organo-montmorillonite nanofibers”, Journal of Applied Polymer Science, Vol. 21 No. 7, ss. 1572-1577.
  • Li, Q., Jia, Z., Yang, Y., Wang, L. ve Guan, Z. (2007), “Preparation and Properties of Poly (vinyl alcohol) Nanofibers by Electrospinning”, 2007 IEEE International Conference on Solid Dielectrics, ss. 215–218.
  • Li, Z. ve Wang, C. (2013), Effects of Working Parameters on Electrospinning, One-Dimensional nanostructures, available at:https://doi.org/10.1007/978-3-642-36427-3.
  • Makaremi, M., De Silva, R.T. ve Pasbakhsh, P. (2015), “Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability”, Journal of Physical Chemistry C, Vol. 119 No. 14, ss. 7949–7958.
  • Matulevicius, J., Kliucininkas, L., Martuzevicius, D., Krugly, E., Tichonovas, M. ve Baltrusaitis, J. (2014), “Design and characterization of electrospun polyamide nanofiber media for air filtration applications”, Journal of Nanomaterials, Vol. 2014, available at:https://doi.org/10.1155/2014/859656.
  • Navarro-Pardo, F., Martínez-Barrera, G., Martínez-Hernández, A.L., Castaño, V.M., RiveraArmenta, J.L., Medellín-Rodríguez, F. ve Velasco-Santos, C. (2013), “Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon”, Materials, Vol. 6 No. 8, ss. 3494–3513.
  • Nirmala, R., Panth, H.R., Yi, C., Nam, K.T., Park, S.J., Kim, H.Y. ve Navamathavan, R. (2010), “Effect of solvents on high aspect ratio polyamide-6 nanofibers via electrospinning”, Macromolecular Research, Vol. 18 No. 8, ss. 759–765.
  • van Oss, C. (2006), Interfacial Forces in Aqueous Media, Second Edition, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, C. 27, available at:https://doi.org/10.1201/9781420015768.
  • Owens, D.K. ve Wendt, R.C. (1969), “Estimation of the surface free energy of polymers”, Journal of Applied Polymer Science, Vol. 13 No. 8, ss. 1741–1747.
  • Padhi, S., Achary, P.G.R. ve Nayak, N.C. (2015), “Molecular transport behaviour of organic solvents through halloysite nanotubes filled ethylene – vinyl acetate copolymer”, Vol. 38 No. 4, ss. 925–933.
  • Pai, C. ve Jeng, R. (1989), “Effects of moisture on thermal and mechanical properties of nylon 6, 6”, Advances in Polymer …, Vol. 9 No. 2, ss. 157–163.
  • Pant, H.R., Bajgai, M.P., Yi, C., Nirmala, R., Nam, K.T., Baek, W. Il ve Kim, H.Y. (2010), “Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Elsevier B.V., Vol. 370 No. 1–3, ss. 87–94.
  • Park, J.H., Kim, B.S., Yoo, Y.C., Khil, M.S. ve Kim, H.Y. (2008), “Enhanced mechanical properties of multilayer nano-coated electrospun nylon 6 fibers via a layer-by-layer selfassembly”, Journal of Applied Polymer Science, Vol. 107 No. 4, ss. 2211–2216.
  • Park, S.-W., Bae, H.-S., Xing, Z.-C., Kwon, O.H., Huh, M.-W. ve Kang, I.-K. (2009), “Preparation and properties of silver-containing nylon 6 nanofibers formed by electrospinning”, Journal of Applied Polymer Science, Vol. 112 No. 4, ss. 2320–2326.
  • Peixoto, A.F., Fernandes, A.C., Pereira, C., Pires, J. ve Freire, C. (2016a), “Physicochemical characterization of organosilylated halloysite clay nanotubes”, Microporous and Mesoporous Materials, Vol. 219, ss. 145–154.
  • Peixoto, A.F., Fernandes, A.C., Pereira, C., Pires, J. ve Freire, C. (2016b), “Physicochemical characterization of organosilylated halloysite clay nanotubes”, Microporous and Mesoporous Materials, Vol. 219, ss. 145–154.
  • Pereda, M., Aranguren, M.I. ve Marcovich, N.E. (2009), “Water vapor absorption and permeability of films based on chitosan and sodium caseinate”, Journal of Applied Polymer Science, Vol. 111 No. 6, ss. 2777–2784.
  • Preda, F.M., Alegría, A., Bocahut, A., Fillot, L.A., Long, D.R. ve Sotta, P. (2015), “Investigation of Water Diffusion Mechanisms in Relation to Polymer Relaxations in Polyamides”, Macromolecules, Vol. 48 No. 16, ss. 5730–5741.
  • Rahmani, H. ve Karimi, M. (2014), “Developing sub-nanofibers in electrospun nylon-6 web by controlling the parameters of the process”, Macromolecular Symposia, Vol. 335 No. 1, ss. 8–11.
  • Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.C. ve Ma, Z. (2005), An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Co. Pte.Ltd., available at:https://doi.org/10.1142/5894.
  • Reimschuessel, H.K. ve Chemical, A. (1978), “Relationships on the effect of water on glass transition temperature and young ’s modulus of nylon 6”, Journal of Polymer Science: Polymer chemisrty Edition, Vol. 16 No. 6, ss. 1229–1236.
  • Riza Erdogan, A., Kaygusuz, I. ve Kaynak, C. (2014), “Influences of aminosilanization of halloysite nanotubes on the mechanical properties of polyamide-6 nanocomposites”, Polymer Composites, Vol. 35 No. 7, ss. 1350–1361.
  • Ryu, Y.J., Kim, H.Y., Lee, K.H., Park, H.C. ve Lee, D.R. (2003), “Transport properties of electrospun nylon 6 nonwoven mats”, European Polymer Journal, Vol. 39 No. 9, ss. 1883– 1889.
  • Saehana, S., Iskandar, F. ve Abdullah, M. (2013), “Optimization of Electrospinning Parameter by Employing Genetic Algorithm in Order to Produce Desired Nanofiber Diameter”, International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering, Vol. 7 No. 1, ss. 78–83.
  • Saharudin, M.S., Atif, R., Shyha, I. ve Inam, F. (2016), “The degradation of mechanical properties in polymer nano-composites exposed to liquid media - A review”, RSC Advances, Royal Society of Chemistry, Vol. 6 No. 2, ss. 1076–1089.
  • Shelley, J.S., Mather, P.T. ve DeVries, K.L. (2001), “Reinforcement and environmental degradation of nylon-6/clay nanocomposites”, Polymer, Vol. 42 No. 13, ss. 5849–5858.
  • Sun, B., Long, Y.Z., Zhang, H.D., Li, M.M., Duvail, J.L., Jiang, X.Y. ve Yin, H.L. (2014), “Advances in three-dimensional nanofibrous macrostructures via electrospinning”, Progress in Polymer Science, Vol. 39 No. 5, ss. 862–890.
  • Sun, P., Liu, G.M., Lv, D., Dong, X., Wu, J.S. ve Wang, D.J. (2015), “Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry”, RSC Advances, Vol. 5 No. 65, ss. 52916–52925.
  • Tan, E.P.S., Ng, S.Y. ve Lim, C.T. (2005), “Tensile testing of a single ultrafine polymeric fiber”, Biomaterials, Vol. 26 No. 13, ss. 1453–1456.
  • Tan, K. ve Obendorf, S.K. (2007), “Fabrication and evaluation of electrospun nanofibrous antimicrobial nylon 6 membranes”, Journal of Membrane Science, Vol. 305 No. 1–2, ss. 287–298.
  • Tao, D., Higaki, Y., Ma, W., Wu, H., Shinohara, T., Yano, T. ve Takahara, A. (2015), “Chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers”, Polymer (United Kingdom), Elsevier Ltd, Vol. 60, ss. 284–291.
  • Uchko, C.J., Chen, L.C., Shen, Y. ve Martina, D.C. (1999), “Processing and microstructural characterization of porous biocompatiblerprotein polymer thin films”, Polymer, Vol. 40, ss. 7397–7407.
  • Vlasveld, D.P.N., Groenewold, J., Bersee, H.E.N. ve Picken, S.J. (2005), “Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties”, Polymer, Vol. 46 No. 26, ss. 12567–12576.
  • De Vrieze, S., De Schoenmaker, B., Ceylan, Ö., Depuydt, J., Van Landuyt, L., Rahier, H., Van Assche, G., vd. (2011), “Morphologic study of steady state electrospun polyamide 6 nanofibres”, Journal of Applied Polymer Science, Vol. 119 No. 5, ss. 2984–2990.
  • Wang, C., Zhang, W., Huang, Z.H., Yan, E.Y. ve Su, Y.H. (2006), “Effect of concentration, voltage, take-over distance and diameter of pinhead on precursory poly (phenylene vinylene) electrospinning”, Pigment & Resin Technology, Vol. 35 No. 5, ss. 278–283.
  • Wang, Q., Zhang, J. ve Wang, A. (2013), “Alkali activation of halloysite for adsorption and release of ofloxacin”, Applied Surface Science, Vol. 287, ss. 54–61.
  • Wudy, K., Drummer, D., Kühnlein, F. ve Drexler, M. (2014), “Influence of degradation behavior of polyamide 12 powders in laser sintering process on produced parts”, AIP Conference Proceedings, Vol. 1593 No. May, ss. 691–695.
  • Xue, J., Niu, Y., Gong, M., Shi, R., Chen, D., Zhang, L. ve Lvov, Y. (2015), “Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection”, ACS Nano, Vol. 9 No. 2, ss. 1600–1612.
  • Yang, Q., Zhenyu, L.I., Hong, Y., Zhao, Y., Qiu, S., Wang, C.E. ve Wei, Y. (2004), “Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning”, Journal of Polymer Science, Part B: Polymer Physics, Vol. 42 No. 20, ss. 3721–3726.
  • Yördem, O.S., Papila, M. ve Menceloǧlu, Y.Z. (2008), “Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology”, Materials and Design, Vol. 29 No. 1, ss. 34–44.
  • Yuan, P., Southon, P.D., Liu, Z., Green, M.E.R., Hook, J.M., Antill, S.J. ve Kepert, C.J. (2008), “Functionalization of Halloysite Clay Nanotubes by Grafting with γAminopropyltriethoxysilane”, The Journal of Physical Chemistry C, Vol. 112 No. 40, ss. 15742–15751.
  • Yuan, P., Tan, D. ve Annabi-Bergaya, F. (2015), “Properties and applications of halloysite nanotubes: recent research advances and future prospects”, Applied Clay Science, Vol. 112–113, ss. 75–93.
  • Yuan, P., Thill, A. ve Bergaya, F. (2016), Nanosized Tubular Clay Minerals: Halloysite and Imogolite, Elsevier, Amsterdam.
  • Zhang, C., Yuan, X., Wu, L., Han, Y. ve Sheng, J. (2005), “Study on morphology of electrospun poly(vinyl alcohol) mats”, European Polymer Journal, Vol. 41 No. 3, ss. 423–432.
  • Zhang, S., Shim, W.S. ve Kim, J. (2009), “Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency”, Materials and Design, Elsevier Ltd, Vol. 30 No. 9, ss. 3659–3666.
  • Zhilin, C., Xixi, Q. ve Dunzhong, Q. (2016), “Electrospinning Preparation and Mechanical Properties of Polymethyl Methacrylate (PMMA)/ Halloysite Nanotubes ( HNTs ) Composite Nanofibers”, Vol. 18 No. 2, ss. 52–56.
  • Zong, R., Hu, Y., Liu, N., Li, S. ve Liao, G. (2007), “Investigation of thermal degradation and flammability of polyamide-6 and polyamide-6 nanocomposites”, Journal of Applied Polymer Science, Vol. 104 No. 4, ss. 2297–2303.
APA BAYRAM G (2018). Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. , 1 - 0.
Chicago BAYRAM GÖKNUR Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. (2018): 1 - 0.
MLA BAYRAM GÖKNUR Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. , 2018, ss.1 - 0.
AMA BAYRAM G Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. . 2018; 1 - 0.
Vancouver BAYRAM G Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. . 2018; 1 - 0.
IEEE BAYRAM G "Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi." , ss.1 - 0, 2018.
ISNAD BAYRAM, GÖKNUR. "Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi". (2018), 1-0.
APA BAYRAM G (2018). Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. , 1 - 0.
Chicago BAYRAM GÖKNUR Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. (2018): 1 - 0.
MLA BAYRAM GÖKNUR Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. , 2018, ss.1 - 0.
AMA BAYRAM G Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. . 2018; 1 - 0.
Vancouver BAYRAM G Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi. . 2018; 1 - 0.
IEEE BAYRAM G "Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi." , ss.1 - 0, 2018.
ISNAD BAYRAM, GÖKNUR. "Elektro-eğirme Yöntemi Kullanılarak Üretilen Naylon-6/Haloysit Nanotüp Nanofiberlerinin Çoklu Fonksiyonel Özelliklerinin Geliştirilmesi". (2018), 1-0.