29 38

Proje Grubu: TOVAG Sayfa Sayısı: 86 Proje No: 215O569 Proje Bitiş Tarihi: 01.07.2018 Metin Dili: Türkçe İndeks Tarihi: 21-03-2020

Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu

Öz:
Nanolif elde etmek için kullanılan yöntemler arasında elektroegirme, düzenek kurulumunun basit ve ucuz olması ve kısa islem süresi ile öne çıkmaktadır. Elektroegirme yöntemi ile sentetik maddelerden nanolif üretimi yaygınken, son yıllarda biyopolimer esaslı nanolif üretimine olan ilgi artmıstır. Bu sebeple, ilk olarak farklı konsantrasyonlarda hazırlanan bezelye unu, mercimek unu, soya proteini ve hidroksipropil metil selüloz (HPMC) bazlı çözeltilerin reolojik özellikleri ve çözelti iletkenlikleri ölçülmüstür. Daha sonra hazırlanan çözeltiler degisik kosullarda elektroegirme islemine tabii tutulmustur. Nanoliflerin homojenligi göz önünde bulundurularak en uygun çözelti konsantrasyonları ve elektroegirme parametreleri belirlenmistir. Elektroegirme yöntemi ile elde edilen nanolifler, yüksek yüzey alanı/hacim oranına sahip olmasından dolayı aktif ambalajlama için avantajlı bir seçenektir. Projede, antioksidan içeren aktif ambalajlar ile gıdaların oksidasyon hızının azaltılması amaçlanmıstır. Bu amaç dogrultusunda, farklı oranlarda galik asit bezelye unu, mercimek unu, soya proteini ve hidroksipropil metil selüloz bazlı nanoliflerin içine elektroegirme yöntemi ile basarılı bir sekilde enkapsüle edilmistir. Elde edilen homojen nanoliflerin gallik asit yüklenme verimleri ve antioksidan kapasiteleri belirlenip, yüksek verim ve antioksidan miktarına sahip nanolifler cevizin ambalajlanması için kullanılmıstır. Yapılan hızlı oksidasyon testi sonucunda, galik asit yüklü nanolifler kullanılarak ambalajlanan cevizlerin kontrol grubundaki cevizlere oranlara daha düsük oksidasyon degerlerine sahip oldukları belirlenmistir. Böylece biyopolimer bazlı galik asit yüklü nanolif üretimi basarıyla gerçeklestirilip, elde edilen nanoliflerin aktif ambalaj malzemesi olarak kullanımı önerilmistir.
Anahtar Kelime: aktif ambalajlama nanolif mercimek bezelye elektroegirme

Konular: Gıda Bilimi ve Teknolojisi
Erişim Türü: Erişime Açık
  • Adabi, M., Saber, R., Faridi-Majidi, R., Faridbod, F. 2015. “Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors”, Materials Science and Engineering C, 48, 673–678.
  • 1- Development of novel pea flour-based nanofibres by electrospinning method (Makale - Indeksli Makale),
  • Alborzi, S., Lim, L.-T., & Kakuda, Y. 2010. “Electrospinning of sodium alginate-pectin ultrafine fibers”, Journal of Food Science, 75(1), C100–7.
  • 2- A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties (Makale - Indeksli Makale),
  • Akhtar, M.-J., Jacquot, M., Jamshidian, M., Imran, M., Arab-Tehrany, E., & Desobry, S. 2013. “Fabrication and physicochemical characterization of HPMC films with commercial plant extract: Influence of light and film composition”, Food Hydrocolloids, 31, 420–427.
  • 3- Influence of solution properties and pH on the fabrication of electrospun lentil flour/HPMC blend nanofibers (Makale - Indeksli Makale),
  • Anonymous. 1989. “Official Methods and Recommended Practices of the American Oil Chemists’ Society”, Fourth Edition, Methods: Ca5a-40, Cd8-53, Cd12-57 ve Ch5-91.
  • Anu Bhushani, J., Anandharamakrishnan, C. 2014. "Electrospinning and electrospraying techniques: Potential food-based applications", Trends in Food Science & Technology, 38(1), 21–33.
  • AOCS (American Oil Chemists’ Society). 1998. AOCS. “Official method Cd 8-53. Peroxide value. In Official Methods and Recommended Practices of the American Oil Chemists’ Society”, 5th ed. (D. Firestone, ed.). AOCS, Campaign, III.
  • AOCS (American Oil Chemists’ Society). 1998. AOCS. “Official method Cd 9-19. 2- Thiobarbituric acid value. Direct method”. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed. (D. Firestone, ed.). AOCS, Campaign, III.
  • Ayrancı, E., Ukta, B. S. U., & Cetin, E. E. 1997. “The Effect of Molecular Weight of Constituents on Properties of Cellulose-based Edible Films”, LWT - Food Science and Technology, 30 (1),101-104.
  • Bakkalbaşı, E., Yılmaz, Ö. M., Javidipour, I., Artık, N. 2012. "Effects of packaging materials, storage conditions and variety on oxidative stability of shelled walnuts", LWT - Food Science and Technology, 46(1), 203–209.
  • Bamdad, F., Goli, A. H., & Kadivar, M. 2006. “Preparation and characterization of proteinous film from lentil (Lens culinaris): Edible film from lentil (Lens culinaris)”, Food Research International, 39(1), 106–111.
  • Bamdad, F., Dokhani, S., & Keramat, J. 2009. “Functional assessment and subunit constitution of Lentil (lens culinaris) proteins during Germination”, International Journal of Agriculture and Biology, 11(6), 690–694.
  • Barac, M., Cabrilo, S., Pesic, M., Stanojevic, S., Zilic, S., Macej, O., Ristic, N., 2010. “Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes”, International Journal of Molecular Sciences.
  • Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G., ve Bowlin, G. L. 2007. “Nanofiber technology: Designing the next generation of tissue engineering scaffolds”, Advanced Drug Delivery Reviews, 59(14), 1413–1433.
  • Baumgarten, P. K. 1971. “Electrostatic spinning of acrylic microfibers”, Journal of Colloid and Interface Science, 36(1), 71–79.
  • Bhardwaj, N., Kundu, S. C. 2010. "Electrospinning: A fascinating fiber fabrication technique", Biotechnology Advances, 28,325-347.
  • Bhattarai, N., Zhang, M. 2007. "Controlled synthesis and structural stability of alginate-based nanofibers", Nanotechnology, 18(45), 455601.
  • Blanco-Padilla, A., López-Rubio, A., Loarca-Piña, G., Gómez-Mascaraque, L. G., & Mendoza, S. 2015. “Characterization, release and antioxidant activity of curcumin-loaded amaranthpullulan electrospun fibers”, LWT - Food Science and Technology, 63, 1137–1144.
  • Busolo, M. A., Torres-giner, S., Lagaron, J. M. 2009. "Enhancing the Gas Barrier Properties of Polylactic Acid by Means of Electrospun Ultrathin Zein Fibers", 2763–2767.
  • Bonilla, J., Atarés, L., Vargas, M., Chiralt, A. 2012. “Effect of essential oils and homogenization conditions on properties of chitosan-based films”, Food Hydrocolloids, 26(1), 9–16.
  • Chen, R. H., Huang, J. R., Tsai, M. L., Tseng, L. Z. 2011. “Differences in degradation kinetics for sonolysis, microfluidization and shearing treatments of chitosan Differences in degradation kinetics for sonolysis, microfluidization and shearing treatments of chitosan”, Polymer International, 60, 897–902.
  • Chen, H.-H., Kang, H.-Y., ve Chen, S.-D. 2008. “The effects of ingredients and water content on the rheological properties of batters and physical properties of crusts in fried foods”, Journal of Food Engineering, 88, 45–54.
  • Cho, D., Netravali, A. N., Joo, Y. L. 2012. "Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers" Polymer Degradation and Stability, 97(5), 747–754.
  • Cho, D., Nnadi, O., Netravali, A., Joo, Y. L. 2010. “Electrospun hybrid soy protein/PVA fibers”, Macromolecular Materials and Engineering, 295(8), 763–773.
  • Choi, W.S., Patel, D. & Han, J.H. 2016. “Effects of pH and Salts on Physical and Mechanical Properties of Pea Starch Films”, Journal of Food Science, 81.
  • Chuysinuan, P., Chimnoi, N., Techasakul, S., & Supaphol, P. 2009. “Gallic acid-loaded electrospun poly(L-lactic acid) fiber mats and their release characteristic”, Macromolecular Chemistry and Physics, 210(10), 814–822.
  • Ćirin, D. M., Poša, M. M., Krstonošić, V. S., & Lj Milanović, M. 2012. “Conductometric study of sodium dodecyl sulfate–nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85) mixed micelles in aqueous solution”, 66(1), 21–28.
  • Colín-Orozco, J., Zapata-Torres, M., Rodríguez-Gattorno, G., & Pedroza-Islas, R. 2015. “Properties of Poly (ethylene oxide)/ whey Protein Isolate Nanofibers Prepared by Electrospinning”, Food Biophysics, 10, 134–144.
  • Colin C., Patrick H., John G., Paul B., Michelle L., Sebastien G., & Winkelmann, W. 2005. “Study of the Main Constituents of Some Authentic Walnut Oils”. Daneshfar, A., Ghaziaskar, H. S., & Homayoun, N.2008. “Solubility of Gallic Acid in Methanol, Ethanol, Water, and Ethyl Acetate”, 776–778.
  • Deitzel, J., Kleinmeyer, J., Harris, D., Beck Tan, N. 2001a. "The effect of processing variables on the morphology of electrospun nanofibers and textiles", Polymer, 42, 261-272.
  • Deitzel, J. M., Kleinmeyer, J. D., Hirvonen, J. K., Beck Tan, N. C. 2001b. "Controlled deposition of electrospun poly (ethylene oxide) fibers", Polymer, 42, 8163–8170.
  • De Schoenmaker, B., Van Der Schueren, L., Ceylan, Ö., De Clerck, K. 2012. “Electrospun polyamide 4.6 nanofibrous nonwovens: Parameter study and characterization”, Journal of Nanomaterials.
  • Ding, B., Kim, H.-Y., Lee, S.-C., Shao, C.-L., Lee, D.-R., Park, S.-J., Kwag, G.-B., Choi, K.-J. 2002. "Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method", Journal of Polymer Science Part B: Polymer Physics, 40(13), 1261–1268.
  • Fabra, M. J., Lopez-rubio, A., & Lagaron, J. M. 2014. “Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters”, 127, 1–9.
  • Fong, H., Chun, I., Reneker, D.H. 1999. "Beaded nanofibers formed during electrospinning", Polymer ,40, 4585–4592.
  • Friedman, M., & Ju, H. S. 2000. “Effect of pH on the Stability of Plant Phenolic Compounds”, 2101–2110.
  • Fu, R., Li, C., Yu, C., Xie, H., Shi, S., Li, Z., & Lu, L. 2016. “A novel electrospun membrane based on moxifloxacin hydrochloride / poly (vinyl alcohol )/ sodium alginate for antibacterial wound dressings in practical application”.
  • Ge, L., Zhao, Y., Mo, T., Li, J., Li, P. 2012. "Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation", Food Control, 26(1), 188–193.
  • Geng, X., Kwon, O.-H., & Jang, J. 2005. “Electrospinning of chitosan dissolved in concentrated acetic acid solution”, Biomaterials,26(27), 5427–32.
  • Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., Gavara, R. 2014. "Advances in antioxidant active food packaging", Trends in Food Science & Technology, 35(1), 42–51.
  • Guo, C., Zhou, L., & Lv, J. 2013. “Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites”, Polymers and Polymer Composites, 21(7), 449–456.
  • Haider, A., Haider, S., Kang, I. K. 2015. “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology”, Arabian Journal of Chemistry.
  • Haghi, A. K., Akbari, M. 2007. "Trends in electrospinning of natural nanofibers", Physica Status Solidi (A) Applications and Materials Science, 204,1830–1834.
  • Jia, Y.-T., Gong, J., Gu, X.-H., Kim, H.-Y., Dong, J., Shen, X.-Y. 2007."Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method", Carbohydrate Polymers, 67(3), 403–409.
  • Jiang, H., Fang, D., Hsiao, B. S., Chu, B., Chen, W. 2004."Optimization and characterization of dextran membranes prepared by electrospinning", Biomacromolecules, 5(2), 326–33.
  • Jongjareonrak, A., Benjakul, S., Visessanguan, W., Prodpran, T., ve Tanaka, M. 2006. “Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper”, Food Hydrocolloid, 20, 492–501.
  • Kang, H.-J., Kim, S.-J., You, Y.-S., Lacroix, M., Han, J. 2013." Inhibitory effect of soy protein coating formulations on walnut (Juglans regia L.) kernels against lipid oxidation", LWT - Food Science and Technology, 51(1), 393–396.
  • Kayaci, F., Uyar, T. 2012."Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin", Food Chemistry, 133(3), 641–649.
  • Kenawy, E. R., Bowlin, G. L., Mansfield, K., Layman, J., Simpson, D. G., Sanders, E. H., Wnek, G. E. 2002."Release of tetracycline hydrochloride from electrospun poly(ethylene-covinylacetate), poly (lactic acid), and a blend", Journal of Controlled Release, 81, 57–64.
  • Kim, Y.-J. 2007. “Antimelanogenic and Antioxidant Properties of Gallic Acid”, Biological & Pharmaceutical Bulletin.
  • Kowalczyk, D. & Baraniak, B. 2011. “Effects of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films”, Journal of Food Engineering, 105, 295– 305.
  • Kriegel, C., Arecchi, A., Arrechi, A., Kit, K., McClements, D. J., Weiss, J. 2008. "Fabrication, functionalization, and application of electrospun biopolymer nanofibers", Critical Reviews in Food Science and Nutrition, 48(8), 775–97.
  • Lim, Y., Gwon, H., Jeun, J. P., Nho, Y. 2010. “Preparation of Cellulose-based Nanofibers Using Electrospinning. Nanofibers”, 179–188.
  • Lu, J.-W., Zhu, Y.-L., Guo, Z.-X., Hu, P., Yu, J. 2006. "Electrospinning of sodium alginate with poly(ethylene oxide)" Polymer, 47(23), 8026–8031.
  • Malik, M. A., Saini, C. S. 2017. “Polyphenol removal from sunflower seed and kernel: Effect on functional and rheological properties of protein isolates”, Food Hydrocolloids, 63, 705–715
  • Megelski, S., Stephens, J. S., Bruce Chase, D., Rabolt, J. F. 2002. "Micro- and nanostructured surface morphology on electrospun polymer fibers", Macromolecules, 35, 8456–8466.
  • Mehyar, G. F., Al-Ismail, K., Han, J. H., Chee, G. W. 2012. "Characterization of edible coatings consisting of pea starch, whey protein isolate, and Carnauba wax and their effects on oil rancidity and sensory properties of walnuts and pine nuts", Journal of Food Science, 77(2), E52–9.
  • Mexis, S. F., Badeka, A. V., Riganakos, K. A., Karakostas, K. X., Kontominas, M. G. 2009." Effect of packaging and storage conditions on quality of shelled walnuts", Food Control, 20(8), 743–751
  • Monahan, F. J., German, J. B., Kinsellat, J. E. 1995. "Effect of pH and Temperature on Protein Unfolding and Thiol/ Disulfide Interchange Reactions during Heat-Induced Gelation of Whey Proteins" J. Agric. Food Chem, 43, 46–52.ited
  • Nwachukwu, C. C. 2010. “Electrospinning protein nanofibers to control cell adhesion”. Neethirajan, S., Jayas, D. S. 2010. "Nanotechnology for the Food and Bioprocessing Industries", Food and Bioprocess Technology, 4(1), 39–47.
  • Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., Quek, S. Y. 2013. "Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid system", Food Chemistry, 136(2), 1013–21.
  • Ohkawa, K., Cha, D., Kim, H., Nishida, A., Yamamoto, H. 2004. "Electrospinning of Chitosan", Macromolecular Rapid Communications, 25(18), 1600–1605.
  • Ozdemir, M., Floros, J. D. 2004. "Active food packaging technologies", Critical Reviews in Food Science and Nutrition, 44(3), 185–93.
  • Pereira de Abreu, D. a., Paseiro Losada, P., Maroto, J., & Cruz, J. M. 2011. “Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca)”, Innovative Food Science & Emerging Technologies, 12(1), 50–55.
  • Pham, Q. P., Sharma, U., Mikos, A. G. 2006. “Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review”, Tissue Engineering Part C: Methods, 12(5), 1197– 1211.
  • Prabhakaran, K., Ojha, P. K., Gokhale, N. M., ve Sharma, S. C. 2009. “Effect of polymer concentration on porosity and pore size characteristics of alumina membrane substrates prepared by gelcasting”, Ceramics International, 35(5), 2083–2085.
  • Ramji, K., Shah, R. N. 2014. “Electrospun soy protein nanofiber scaffolds for tissue regeneration”, Journal of Biomaterials Applications, 29(3), 411–422.
  • Rangel-Marrón, M., Montalvo-Paquini, C., Palou, E., ve López-Malo, A. 2013. “Optimization of the moisture content, thickness, water solubility and water vapor permeability of sodium alginate edible films”, Recent Advances in Chemical Engineering, Biochemistry and Computational Chemistry, 72–78.
  • Rodoplu, D., Mutlu, M. 2012. “Effects of Electrospinning Setup and Process Parameters on Nanofiber Morphology Intended for the Modification of Quartz Crystal Microbalance Surfaces”, Journal of Engineered Fibers and Fabrics, 7(2), 118–123.
  • Safi, S., Morshed, M., Hosseini Ravandi, S. A., Ghiaci, M. 2007. "Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly (vinyl alcohol) and sodium alginate/poly (ethylene oxide)", Journal of Applied Polymer Science, 104(5), 3245–3255.
  • Sanches-Silva, A., Costa, D., Albuquerque, T. G., Buonocore, G. G., Ramos, F., Castilho, M. C., Machado, A.V., Costa, H. S. 2014. "Trends in the use of natural antioxidants in active food packaging: a review", Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 31(3), 374–95.
  • Sardar, N., & Kamil, M. 2012. “Interaction between Nonionic Polymer Hydroxypropyl Methyl Cellulose (HPMC) and Cationic Gemini/Conventional Surfactants”, Industrial & Engineering Chemistry Research, 51, 1227–1235.
  • Science, F., Royal, T. 2003. "Investigation of Packaging Systems for Shelled Walnuts Based on Oxygen Absorbers", Journal of Agricultural Food Chemistry, 51, 4941–4947.
  • Son, W. K., Youk, J. H., Lee, T. S., Park, W. H. 2004. "The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers" Polymer, 45(9), 2959– 2966.
  • Su, P., Wang, C., Yang, X., Chen, X., Gao, C., Feng, X.-X., Chenc J.-Y., Ye, J., Gou, Z. 2011. "Electrospinning of chitosan nanofibers: The favorable effect of metal ions", Carbohydrate Polymers, 84(1), 239–246.
  • Sukigara, S., Gandhi, M., Ayutsede, J., Micklus, M., Ko, F. 2003. "Regeneration of Bombyx mori silk by electrospinning-part 1: processing parameters and geometric properties", Polymer, 44(19), 5721-5727.
  • Sullivan, S. T., Tang, C., Kennedy, A., Talwar, S., Khan, S. A. 2014. "Electrospinning and heat treatment of whey protein nanofibers", Food Hydrocolloids, 35, 36–50.
  • Tampau, A., González-Martinez, C., & Chiralt, A. 2017. “Carvacrol encapsulation in starch or PCL based matrices by electrospinning”, Journal of Food Engineering, 214, 245–256.
  • Tayi, A. S., Pashuck, E. T., Newcomb, C. J., Mcclendon, M. T., Stupp, S. I. "Electrospinning Bioactive Supramolecular Polymers from Water".
  • Tian, F., Decker, E. A., Goddard, J. M. 2013."Controlling lipid oxidation of food by active packaging technologies", Food & Function, 4(5), 669–80.
  • Tort, S., & Acartürk, F. 2016. “Preparation and characterization of electrospun nanofibers containing glutamine”, Carbohydrate Polymers, 152, 802–814.
  • Vanhanen, L. P., & Savage, G. P. 2006. “The use of peroxide value as a measure of quality for walnut flour stored at five different temperatures using three different types of packaging”, Food Chemistry, 99(1), 64–69.
  • Vega-Lugo, A.-C., Lim, L.-T. 2012. “Effects of poly (ethylene oxide) and pH on the electrospinning of whey protein isolate”, Journal of Polymer Science Part B: Polymer Physics, 50, 1188–1197.
  • Veleirinho, B., Lopes-da-Silva, J. A. 2009. "Application of electrospun poly (ethylene terephthalate) nanofiber mat to apple juice clarification", Process Biochemistry, 44, 353–356.
  • Wang, S., Marcone, M. F., Barbut, S., Lim, L.-T. 2013. "Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts", Food Research International, 52(2), 467–472.
  • Wang, S.-C., Wei, T.-C., Chen, W.-B., & Tsao, H.-K. 2004. “Effects of surfactant micelles on viscosity and conductivity of poly (ethylene glycol) solutions”, The Journal of Chemical Physics, 120(4980).
  • Wu, L., Yuan, X., Sheng, J. 2005."Immobilization of cellulase in nanofibrous PVA membranes by electrospinning", Journal of Membrane Science, 250(1-2), 167–173.
  • Yen G.C., Duh P.D. 1994. “Scavenging effect of methanolic extract of peanut hulls on freeradical and active oxygen species”, Journal of Agricultural Food Chemistry, 42, 629-32.
  • Yuan, X. Y., Zhang, Y. Y., Dong, C., Sheng, J. 2004."Morphology of ultrafine polysulfone fibers prepared by electrospinning", Polymer International, 53, 1704–1710.
  • Zhang, C., Yuan, X., Wu, L., Han, Y., Sheng, J. 2005. “Study on morphology of electrospun poly(vinyl alcohol) mats”, European Polymer Journal, 41(3), 423–432.
  • Zhang, Y., Yang, L., Zu, Y., Chen, X., Wang, F., & Liu, F. 2010. “Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage”, Food Chemistry, 118(3), 656–662.
  • Zhu, J., Shao, H., Hu, X. 2007. “Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH”, International Journal of Biological Macromolecules, 41, 469–474
  • Zwarts, L., Savage, G. P., McNeil, D. L. 1999."Fatty acid content of New Zealand-grown walnuts (Juglans regia L.)", International Journal of Food Sciences and Nutrition, 50, 189–194.
APA ŞÜMNÜ S, UYAR T, AYHAN Z, ŞAHİN S (2018). Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. , 1 - 86.
Chicago ŞÜMNÜ Servet GÜLÜM,UYAR Tamer,AYHAN Zehra,ŞAHİN Serpil Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. (2018): 1 - 86.
MLA ŞÜMNÜ Servet GÜLÜM,UYAR Tamer,AYHAN Zehra,ŞAHİN Serpil Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. , 2018, ss.1 - 86.
AMA ŞÜMNÜ S,UYAR T,AYHAN Z,ŞAHİN S Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. . 2018; 1 - 86.
Vancouver ŞÜMNÜ S,UYAR T,AYHAN Z,ŞAHİN S Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. . 2018; 1 - 86.
IEEE ŞÜMNÜ S,UYAR T,AYHAN Z,ŞAHİN S "Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu." , ss.1 - 86, 2018.
ISNAD ŞÜMNÜ, Servet GÜLÜM vd. "Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu". (2018), 1-86.
APA ŞÜMNÜ S, UYAR T, AYHAN Z, ŞAHİN S (2018). Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. , 1 - 86.
Chicago ŞÜMNÜ Servet GÜLÜM,UYAR Tamer,AYHAN Zehra,ŞAHİN Serpil Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. (2018): 1 - 86.
MLA ŞÜMNÜ Servet GÜLÜM,UYAR Tamer,AYHAN Zehra,ŞAHİN Serpil Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. , 2018, ss.1 - 86.
AMA ŞÜMNÜ S,UYAR T,AYHAN Z,ŞAHİN S Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. . 2018; 1 - 86.
Vancouver ŞÜMNÜ S,UYAR T,AYHAN Z,ŞAHİN S Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu. . 2018; 1 - 86.
IEEE ŞÜMNÜ S,UYAR T,AYHAN Z,ŞAHİN S "Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu." , ss.1 - 86, 2018.
ISNAD ŞÜMNÜ, Servet GÜLÜM vd. "Elektroeğirme Yöntemi ile Nanolif Bazlı Aktif Ambalaj Malzemesi Geliştirilmesi Ve Gıda Validasyonu". (2018), 1-86.