Pınar Zeynep ÇULFAZ EMECEN
(Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Ankara, Türkiye)
Proje Grubu: TÜBİTAK MAG ProjeSayfa Sayısı: 83Proje No: 115M520Proje Bitiş Tarihi: 01.05.2018Türkçe

0 0
Organik Çözücü Ile Nanofiltrasyon Uygulamaları Için Selüloz Membranların Düz Tabaka Ve Kovuklu Elyaf Olarak Üretilmesi Ve Karakterizasyonu
Nanofiltrasyon (NF) yaklasık 1 nm'den küçük boyutlardaki moleküller ve birden fazla yüklü iyonların boyut ve yüklerinden dolayı membranlar tarafından tutuldugu bir süreçtir. NF süreçlerinin günümüzde su arıtma, gıda ve ilaç endüstrisi gibi pek çok alanda uygulamaları bulunmaktadır. Bu uygulamalarda NF yaygın olarak sulu sistemler ile kullanılmaktadır. Bunun yanında pek çok süreçte NF ile ayırmadan faydalanabilecek organik çözücülerin kullanıldıgı akımlar bulunmaktadır. Organik çözücü ile nanofiltrasyon (organic solvent nanofiltration, OSN) süreçlerinin yaygınlasması çözücüye dayanıklı, kararlı ve tahmin edilebilir performans gösteren membranların gelistirilebilmesine baglıdır. Bu projede selüloz membranlar düz tabaka ve kovuklu elyaf geometrisinde, iyonik sıvıdaki (1-etil-3-metilimidazolym asetat, [EMIM]OAc) çözeltilerinden faz degisimi ile üretilmistir. Membranlarda çözücüde DMSO ve çözmeyen olarak su yerine etanol kullanıldıgında kristalligin düstügü, yüksek kristallik ile boya tutma oranları arasında dogrusal bir ilisli oldugu gözlemlenmistir.Anlık faz degisimi ölçümlerinde etanol çözmeyen olarak kullanıldıgında faz degisiminin suda oldugundan daha yavas ilerledigi görülmüs, bu etanolün daha düsük difüzyon katsayısı ile iliskilendirilmistir. Çözücü viskositesindeki ciddi degisiklikler faz degisim hızını degistirmemistir. Selüloz ? iyonik sıvı çözeltilerine uçucu yan çözücü olarak aseton eklenip, koagülasyon öncesi asetonun buharlastırılmasının membranların boya tutma oranını artırdıgı görülmüstür. Baslangıç çözeltisinde yüksek derisimde selüloz bulundurmak ve membranları kurutmak da yapıyı sıkılastırarak boya tutma oranının artırmaktadır. Bu sekilde %94 oranında bromotimol mavisi (624 Da) tutma oranına sahip membranlar üretilebilmistir. Membranların boya tutma oranının boyaların boyutundan daha çok yük, hidrojen bagı yapma kapasitesi ve çözücüye baglı oldugu görülmüstür. Membranda yüksek oranda emilen, dolayısıyla membrana afinitesi yüksek çözünenlerin tutulma oranının düsük oldugu, az emilenlerin ise yüksek oldugu görülmüstür. Bu, çözünme-yayınım mekanizması ile açıklanmıstır. Üretilen membranların polar aprotik çözücüler dahil pek çok farklı nitelikte çözücüye dayanıklı oldugu gösterilmistir. Dimetil sülfoksitte de etanolde oldugu gibi %80 üzeri bromotimol mavisi tutma oranı görülmüstür. 1,2,3,4-butantetrakarboksilik asit ile çapraz baglama sonucu membranların anyonik bir boya olan Bengal pembesini tutma oranı %90 üzerine çıkmıs, bu durum çapraz baglanmada açıkta kalan karboksil gruplarının membrana negatif yük vermesi ile açıklanmıstır.
  • 1. Baker, R.W., 2012, Membrane Technology and Applications (3. Basım), İngiltere, John Wiley & Sons Ltd.
  • 2. White, L.S., Nitsch, A.R., 2000, “Solvent recovery from lube oil filtrates with a polyimide membrane”, Journal of Membrane Science, 179 (1-2), 267-274.
  • 3. Teixeira, A.R.S., Santos, J.L.C., Crespo, J.G., 2014, “Assessment of solvent resistant nanofiltration membranes for valorization of deodorizer distillates”, Journal of Membrane Science, 470, 138-147.
  • 4. Ormerod, D., Sledsens, B., Vercammen, G., Van Gool, D., Linsen, T., Buekenhoudt, A., Bongers, B., 2013, “Demonstration of purification of a pharmaceutical intermediate via organic solvent nanofiltration in the presence of acid”, Separation and Purification Technology, 115, 158-162.
  • 5. Siew, W.E., Livingston, A.G., Ates, C., Merschaert, A., 2013, “Continuous solute fractionation with membrane cascades - A high productivity alternative to diafiltration”, Separation and Purification Technology, 102, 1-14.
  • 6. Székely, G., Bandarra, J., Heggie, W., Sellergren, B., Ferreira, F.C., 2012, “A hybrid approach to reach stringent low genotoxic impurity contents in active pharmaceutical ingredients: Combining molecularly imprinted polymers and organic solvent nanofiltration for removal of 1,3-diisopropylurea”, Separation and Purification Technology, 86, 79-87.
  • 7. Valadez-Blanco, R., Ferreira, F.C., Jorge, R.F., Livingston, A.G., 2008, “A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration (OSN) membranes”, Journal of Membrane Science, 317 (1-2), 50-64.
  • 8. Wong, H.-T., Pink, C.J., Ferreira, F.C., Livingston, A.G., 2006, “Recovery and reuse of ionic liquids and palladium catalyst for Suzuki reactions using organic solvent nanofiltration”, Green Chemistry, 8 (4), 373-379.
  • 9. Luthra, S.S., Yang, X., Freitas Dos Santos, L.M., White, L.S., Livingston, A.G., 2002, “Homogeneous phase transfer catalyst recovery and re-use using solvent resistant membranes” Journal of Membrane Science, 201 (1-2), 65-75.
  • 10. Vandezande, P., Gevers, L.E.M., Vankelecom, I.F.J., 2008, “Solvent resistant nanofiltration: separating on a molecular level”, Chemical Society Reviews, 37, 365-405.
  • 11. Marchetti, P., Jimenez Solomon, M.F., Szekely, G., Livingston, A.G., 2014, “Molecular separation with organic solvent nanofiltration: A critical review”, Chemical Reviews, 114, 10735-10806.
  • 12. See Toh, Y.H., Lim, F.W., Livingston, A.G., 2007, “Polymeric membranes for nanofiltration in polar aprotic solvents”, Journal of Membrane Science, 301 (1-2), 3-10.
  • 13. Van der Bruggen, B., Geens, J., Vandecasteele, C., 2002, “Influence of organic solvents on the performance of polymeric nanofiltration membranes”, Separation Science and Technology, 37 (4), 783-797.
  • 14. White, L.S., Wildemuth, C.R., 2006, “Aromatics enrichment in refinery streams using hyperfiltration”, Industrial and Engineering Chemistry Research, 45, 9136-9143.
  • 15. Soroko, I., Bhole, Y., Livingston, A.G., 2011, “Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes”, Green Chemistry, 13 (1), 162-168.
  • 16. Kosaraju, P.B., Sirkar, K.K., 2008, “Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration”, Journal of Membrane Science, 321 (2), 155-161.
  • 17. Vanherck, K., Vandezande, P., Aldea, S.O., Vankelecom, I.F.J., 2008, “Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents”, Journal of Membrane Science, 320 (1-2), 468-476.
  • 18. Gevers, L.E.M., Vankelecom, I.F.J., Jacobs, P.A., 2006, “Solvent resistant nanofiltration with filled polydimethylsiloxane (PDMS) membranes, Journal of Membrane Science, 278, 199-204.
  • 19. Volkov, A.V., Stamatialis, D.F., Khotimsky, V.S., Volkov, V.V., Wessling, M., Platé, N.A., 2006, “Poly[1-(trimethylsilyl)-1-propyne] as a solvent resistance nanofiltration membrane material”, Journal of Membrane Science, 281 (1-2), 351-357.
  • 20. Li, X., Vandezande, P., Vankelecom, I.F.J., 2008, “Polypyrrole modified solvent resistant nanofiltration membranes”, Journal of Membrane Science, 320 (1-2), 143-150.
  • 21. See-Toh, Y.H., Ferreira, F.C., Livingston, A.G., 2007, “The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes”, Journal of Membrane Science, 299 (1-2), 236-250.
  • 22. Darvishmanesh, S., Tasselli, F., Jansen, J.C., Tocci, E., Bazzarelli, F., Bernardo, P., Luis, P., Degrève, J., Drioli, E., Van der Bruggen, B., 2011, “Preparation of solvent stable polyphenylsulfone hollow fiber nanofiltration membranes”, Journal of Membrane Science, 384 (1-2), 89-96.
  • 23. Buonomenna, M.G., Golemme, G., Jansen, J.C., Choi, S.-H., 2011, “Asymmetric PEEKWC membranes for treatment of organic solvent solutions”, Journal of Membrane Science, 368 (1-2), 144-149.
  • 24. Holda, A.K., Vankelecom, I.F.J., 2014, “Integrally skinned PSf-based SRNF-membranes prepared via phase inversion-Part A: Influence of high molecular weight additives”, Journal of Membrane Science, 450, 512-521.
  • 25. Holda, A.K., Vankelecom, I.F.J., 2014, “Integrally skinned PSf-based SRNF-membranes prepared via phase inversion-Part B: Influence of low molecular weight additives”, Journal of Membrane Science, 450, 499-511.
  • 26. Hendrix, K., Koeckelberghs, G., Vankelecom, I.F.J., 2014, “Study of phase inversion parameters for PEEK-based nanofiltration membranes”, Journal of Membrane Science, 452, 241-252.
  • 27. Jansen, J.C., Darvishmanesh, S., Tasselli, F., Bazzarelli, F., Bernardo, P., Tocci, E., Friess, K., Randova, A., Drioli, E., Van der Bruggen, B., 2013, “Influence of the blend composition on the properties and separation performance of novel solvent resistant polyphenylsulfone/polyimide nanofiltration membranes”, Journal of Membrane Science, 447, 107-118.
  • 28. Dutczak, S.M., Cuperus, F.P., Wessling, M., Stamatialis, D.F., 2013, “New crosslinking method of polyamide-imide membranes for potential application in harsh polar aprotic solvents”, Separation and Purification Technology, 102, 142-146.
  • 29. Siddique, H., Bhole, Y., Peeva, L.G., Livingston, A.G., 2014, “Pore preserving crosslinkers for polyimide OSN membranes”, Journal of Membrane Science, 465, 138-150.
  • 30. Zwijnenberg, H.J., Krosse, A.M., Ebert, K., Peinemann, K.-V., Cuperus, F.P., 1999, “Acetone-stable nanofiltration membranes in deacidifying vegetable oil”, Journal of the American Oil Chemists' Society, 76 (1), 83-87.
  • 31. Mautner, A., Lee, K.-Y., Lahtinen, P., Hakalahti, M., Tammelin, T., Li, K., Bismarck, A., 2014, “Nanopapers for organic solvent nanofiltration”, Chemical Communications, 50 (43), 5778-5781.
  • 32. Mautner, A., Lee, K.-Y., Tammelin, T., Mathew, A.P., Nedoma, A.J., Li, K., Bismarck, A., 2015, “Cellulose nanopapers as tight aqueous ultra-filtration membranes”, Reactive and Functional Polymers, 86, 209-214.
  • 33. Li, H.-J., Cao, Y.-M., Qin, J.-J., Jie, X.-M., Wang, T.-H., Liu, J.-H., Yuan, Q., 2006, “Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil-water separation”, Journal of Membrane Science, 279 (1-2), 328-335.
  • 34. Ruckenstein, E., Guo, W., 2001, “Crosslinked mercerized cellulose membranes and their application to membrane affinity chromatography”, Journal of Membrane Science, 187 (1-2), 277-286.
  • 35. Liebert, T., 2010, “Cellulose solvents-remarkable history, bright future”, ACS Symposium Series, 1033, 3-54.
  • 36. Li, X.-L., Zhu, L.-P., Zhu, B.-K., Xu, Y.-Y., 2011, “High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent”, Separation and Purification Technology, 83 (1), 66-73.
  • 37. Dawsey, T.R., McCormick, C.L., 1990, “Lithium chloride/dimethylacetamide solvent for cellulose. A literature review”, Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, C30 (3-4), 405-440.
  • 38. Rogers, R.D., Seddon, K.R., 2003, “Ionic Liquids - Solvents of the Future?”, Science, 302 (5646), 792-793.
  • 39. Mora-Pale, M., Meli, L., Doherty, T.V., Linhardt, R.J., Dordick, J.S., 2011, “Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass”, Biotechnology and Bioengineering, 108 (6), 1229-1245.
  • 40. Strathmann, H., Kock, K., 1977, “The formation mechanism of phase inversion membranes”, Desalination, 21 (3), 241-255.
  • 41. Xing, D.Y., Peng, N., Chung, T.-S., 2010, “Formation of cellulose acetate membranes via phase inversion using ionic liquid, [BMIM]SCN, as the solvent”, Industrial and Engineering Chemistry Research, 49 (18), 8761-8769.
  • 42. Xing, D.Y., Peng, N., Chung, T.S., 2012, “Molecular interactions between novel solvent [EMIM]SCN and cellulose acetate, and their influences on hollow fiber ultrafiltration membranes”, Procedia Engineering, 44, 320-322.
  • 43. Xing, D.Y., Chan, S.Y., Chung, T.-S., 2013, “Fabrication of porous and interconnected PBI/P84 ultrafiltration membranes using [EMIM]OAc as the green solvent”, Chemical Engineering Science, 87, 194-203.
  • 44. Xing, D.Y., Chan, S.Y., Chung, T.-S., 2012, “Molecular interactions between polybenzimidazole and [EMIM]OAc, and derived ultrafiltration membranes for protein separation”, Green Chemistry, 14 (5), 1405-1412.
  • 45. Xing, D.Y., Chan, S.Y., Chung, T.-S., 2014, “The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration”, Green Chemistry, 16 (3), 1383-1392.
  • 46. Chen, H.-Z., Wang, N., Liu, L.-Y., 2012, “Regenerated cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium chloride as solvent using wheat straw”, Journal of Chemical Technology and Biotechnology, 87 (12), 1634-1640.
  • 47. Ma, B., Qin, A., Li, X., He., C., 2013, “Preparation of cellulose hollow fiber membrane from bamboo pulp/1-butyl-3-methylimidazolium chloride/dimethyl sulfoxide system”, Industrial and Engineering Chemistry Research, 52, 9417-9421.
  • 48. Kimmerle, K., Strathmann, H., 1990, “Analysis of the structure-determining process of phase inversion membranes”, Desalination, 79 (2-3), 283-302.
  • 49. Machado, P.S.T., Habert, A.C., Borges, C.P., 1999, “Membrane formation mechanism based on precipitation kinetics and membrane morphology: Flat and hollow fiber polysulfone membranes”, Journal of Membrane Science, 155 (2), 171-183.
  • 50. Van De Witte, P., Dijkstra, P.J., Van Den Berg, J.W.A., Feijen, J., 1996, “Phase separation processes in polymer solutions in relation to membrane formation”, Journal of Membrane Science, 117 (1-2), 1-31.
  • 51. Reuvers, A.J., van den Berg, J.W.A., Smolders, C.A., 1987, “Formation of membranes by means of immersion precipitation. Part I. A model to describe mass transfer during immersion precipitation”, Journal of Membrane Science, 34 (1), 45-65.
  • 52. Reuvers, A.J., Smolders, C.A., 1987, “Formation of membranes by means of immersion precipitation. Part II. the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water”, Journal of Membrane Science, 34 (1), 67-86.
  • 53.Gençal, Y., Durmaz, E.N., Çulfaz-Emecen, P.Z., 2015, “Preparation of patterned microfiltration and their performance in crossflow yeast filtration”, Journal of Membrane Science, 476, 224-233.
  • 54. Guillen, G.R., Ramon, G.Z., Kavehpour, H.P., Kaner, R.B., Hoek, E.M.V., 2013, “Direct microscopic observation of membrane formation by nonsolvent induced phase separation”, Journal of Membrane Science, 431, 212-220.
  • 55. Yun, Y., Zhang, P., Zhu, M., Liu, C., Wang, L., Chen, C., Li, J., 2006, “Preparation and characterization of poly(phthalazinone ether sulfone) hollow fiber ultrafiltration membranes, Langmuir, 268, 181-188.
  • 56. Yun, Y., Le-Clech, P., Dong, G., Sun, D., Wang, Y., Qin, P., Chen, Z., Li, J., Chen, C., 2012, “Formation kinetics and characterization of polyphthalazinone ether ketone hollow fiber ultrafiltration membranes”, Journal of Membrane Science, 389, 416-423.
  • 57. Susanto, H., Stahra, N., Ulbricht, M., 2009, “High performance polyethersulfone microfiltration membranes having high flux and stable hydrophilic property”, Journal of Membrane Science, 342 (1-2), 153-164.
  • 58. Anokhina, T.S., Yushkin, A.A., Makarov, I.S., Ignatenko, V.Y., Kostyuk, A.V., Antonov, S.V., Volkov, A.V., 2016, “Cellulose composite membranes for nanofiltration of aprotic solvents”, Petroleum Chemistry, 56 (11), 1085-1092.
  • 59. . Anokhina, T.S., Pleshivtseva, T.S., Ignatenko, V.Y., Antonov, S.V., Volkov, A.V., 2017, “Fabrication of composite nanofiltration membranes from cellulose solutions in an [Emim]OAc–DMSO mixture”, Petroleum Chemistry, 57 (6), 477-482.
  • 60. Hansen, C. (2007). Hansen solubility parameters (2nd ed.). Boca Raton: CRC Press.
  • 61. Wang, S., Peng, X., Zhong, L., Jing, S., Cao, X., Lu, F., & Sun, R. (2015). Choline chloride/urea as an effective plasticizer for production of cellulose films. Carbohydrate Polymers,117, 133-139.
  • 62. Ford, E. J., Mendon, S. K., Thames, S. F., & Rawlins, J. W. (2010). X-ray Diffraction of Cotton Treated with Neutralized Vegetable Oil-based Macromolecular Crosslinkers. Journal of Engineered Fibers and Fabrics,5(1), 10-20.
  • 63. Wertz, J., Mercier, J., Bédué, O. Cellulose science and technology (1st ed., pp. 87- 146). Lausanne: CRC Press.
  • 64. Lejeune, A. & Deprez, T. (2010). Cellulose (1st ed., pp. 1-38). Hauppauge, N.Y.: Nova Science Publishers.
  • 65. Jiang, G., Huang, W., Li, L., Wang, X., Pang, F., Zhang, Y., & Wang, H. (2012). Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydrate Polymers,87(3), 2012-2018.
  • 66. Liu, Z., Sun, X., Hao, M., Huang, C., Xue, Z., & Mu, T. (2015). Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydrate Polymers,117, 99-105.
  • 67. Madhavan, P., Sougrat, R., Behzad, A. R., Peinemann, K., & Nunes, S. P. (2015). Ionic liquids as self-assembly guide for the formation of nanostructured block copolymer membranes. Journal of Membrane Science,492, 568-577.
  • 68. Gopiraman, M., Fujimori, K., Zeeshan, K., Kim, B. S., & Kim, I. S. (2013). Structural and mechanical properties of cellulose acetate/graphene hybrid nanofibers: Spectroscopic investigations. Express Polymer Letters,7(6), 554-563.
  • 69. Endo, T., Hosomi, S., Fujii, S., Ninomiya, K., & Takahashi, K. (2016). Anion Bridging- Induced Structural Transformation of Cellulose Dissolved in Ionic Liquid. The Journal of Physical Chemistry Letters,7(24), 5156-5161.
  • 70. Burgal, J. D., Peeva, L., Marchetti, P., & Livingston, A. (2015). Controlling molecular weight cut-off of PEEK nanofiltration membranes using a drying method. Journal of Membrane Science,493, 524-538.
  • 71. Wienk, I.M., Folkers, B., Van Den Boomgaard, T., Smolders, C.A. (1994). Critical factors in the determination of the pore size distribution of ultrafiltration membranes using the liquid displacement method. Separation Science and Technology, 29 (11), 1433-1440.
  • 72. Çulfaz, P.Z., Rolevink, E., van Rijn, C., Lammertink, R.G.H., Wessling, M. (2010). Microstructured hollow fibers for ultrafiltration, Journal of Membrane Science, 347 (1- 2), pp. 32-41.
  • 73. Kim, D., Le, N. L., & Nunes, S. P. (2016). The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate. Journal of Membrane Science,520, 540-549.
  • 74. Kang, Y. S., Kim, H. J., Kim, Y. H., & Jo, W. H. (1988). The mechanism of asymmetric membrane formation via phase inversion process. Polymer (korea),12(3), 279-287.
  • 75. Young, R. & Lovell, P. (2011). Introduction to polymers (3rd ed.). Boca Raton: CRC.
  • 76. Kim, D., Salazar, O. R., & Nunes, S. P. (2016). Membrane manufacture for peptide separation. Green Chem.,18(19), 5151-5159.
  • 77. Rein, D. M., Khalfin, R., Szekely, N., & Cohen, Y. (2014). True molecular solutions of natural cellulose in the binary ionic liquid-containing solvent mixtures. Carbohydrate Polymers,112, 125-133.
  • 78. Bird, R.B., Stewart, W.E., Lightfoot, E.N. (2007). Transport Phenomena (2nd ed.). Wiley.
  • 79. Fadeeva, T. A., Husson, P., Devine, J. A., Gomes, M. F., Greenbaum, S. G., & Castner, E. W. (2015). Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids. The Journal of Chemical Physics,143(6), 064503
  • 80. Strathmann, H., Kock, K., Amar, P., & Baker, R. (1975). The formation mechanism of asymmetric membranes. Desalination, 16(2), 179-203.
  • 81. Gençal, Y., Durmaz, E.N., Çulfaz-Emecen, P.Z. (2015) Preparation of patterned microfiltration membranes and their performance in crossflow yeast filtration, Journal of Membrane Science, 476, 224-233.
  • 82. Mulder, M. (1996). Basic Principles of Membrane Technology. p-130
  • 83. Puspasari, T., & Peinemann, K. (2016). Application of thin film cellulose composite membrane for dye wastewater reuse. Journal of Water Process Engineering, 13, 176- 182.
  • 84. Volkov, A., Stamatıalıs, D., Khotımsky, V., Volkov, V., Wesslıng, M., & Plate, N. (2006). Poly[1-(trimethylsilyl)-1-propyne] as a solvent resistance nanofiltration membrane material. Journal of Membrane Science, 281(1-2), 351-357.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.